MAT 239 (Differential Equations), Prof. Swift

 Worksheet 18, The General Solution of a LHODECC.1. Suppose the characteristic equation of a LHODECC for $y(x)$ factors over the real numbers as $\left(r^{2}+4\right)^{2}(r-5)^{3}=0$.
(a) What are the roots of the characteristic equation?
(b) What is the general solution of the LHODECC?
2. Suppose one solution of a 5th order LHODECC is $y(x)=3 x^{2}+4 e^{x} \sin (2 x)$.
(a) What are the roots of the characteristic equation of the LHODECC?
(b) What is the simplest general solution of a LHODECC that contains the function $y(x)=3 x^{2}+$ $4 e^{x} \sin (2 x)$?

Rule 1 says that the first guess for the form of the particular solution to a LNODECC, $L[y]=g(x)$ is the simplest general solution of a LHODECC that contains the function $g(x)$.
3. Use Rule 1 and Problem 2 to find the form of the particular solution to the LNODECC $y^{\prime \prime}+y^{\prime}+y=3 x^{2}+4 e^{x} \sin (2 x)$. This will have 5 undetermined coefficients A, B, C, D, and E.
4. (a) Use Rule 1 to find the form of the particular solution to the LNODECC $y^{\prime \prime}+y^{\prime}+y=3 e^{2 x}$. This will have a single undetermined coefficient A.
(b) Find a particular solution to that same LNODECC, $y^{\prime \prime}+y^{\prime}+y=3 e^{2 x}$.

