MAT 239 (Differential Equations), Prof. Swift
Worksheet 21, An Undamped, Undriven Oscillator

1. Suppose a ball stretches an ideal spring 6 inches. The ball is placed on the spring, where it
oscillates up and down. Find the ODE for y(¢), the extension of the spring in feet beyond its
equilibrium, after ¢ seconds. Ignore friction and use g = 32 feet per second per second.

Hint: Let m be the mass of the ball. The spring constant k¥ depends on m, but the ODE does not.
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2. Write down the general solutlon to the ODE. It’s OK to write down the solution by inspection.
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3. Find the solution y(t) to the ODE for arbitrary initial conditions y(0) = y, and %/(0) = wq
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4. Find the particular solut1on to the ODE with the initial conditions y(0) = —1, ¥'(0) = 8.
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5. Write the SOhlthIl to 4 in the y(t) = Rcos(wet — 8) form. Draw a plcture in the ¢;-¢ plane!
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6. Sketch the solution to the IVP in problem 4 over at least two periods of the oscillation.
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