MAT 239 (Differential Equations), Prof. Swift Worksheet 25.5, More Power Series Review

The Taylor series for the function f, centered at a, is $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$, provided you can differentiate f as often as you want. Recall that $f^{(n)}(a)$ is the nth derivative of f, evaluated at a, and n ! is " n factorial" defined by $0!=1$ and $n!=n \cdot(n-1)$! for positive integers.

1. Write out the first 3 terms ($n=0$ up to $n=2$, then write $+\cdots$) of the Taylor series using the exact notation of that sum. That is, continue the equation I've started.
$f(x)=\frac{f^{(0)}(a)}{0!}(x-a)^{0}+$
2. Now, simplify that expression as much as possible. (Use the usual "prime" notation for derivatives, and evaluate the factorials.)
$f(x)=$
3. Use the formula from problem 2 to find the first three nonzero terms of the Taylor Series of $f(x)=\frac{1}{x}=x^{-1}$, centered at $a=100=10^{2}$. (This has "+...".)
4. Write down the degree 2 Taylor polynomial for that same function f, centered at $a=100$.
5. Use the result of Problem 4 to get an approximation to $\frac{1}{99}$. Compare to the exact answer of $\frac{1}{99}=0.01010101 \ldots$.
