MAT 239 (Differential Equations), Prof. Swift Worksheet 25, Power Series Review

A "nice" function is equal to its Taylor Series at all x where the series converges. You should know this series, its interval of convergence, and its radius of convergence from Calc 2.

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots, \quad \text { for }-1<x<1, R=1
$$

Using just this fact, write down the first four nonzero terms of the Taylor Series for these functions, and indicate their interval of convergence and radius of convergence. I gave a hint on the first one.

1. $f(x)=\frac{3}{1-2 x}=3 \frac{1}{1-(2 x)}$
2. $f(x)=\frac{x}{1+2 x^{2}}$
3. In problem 2 , you showed that $\frac{x}{1+2 x^{2}}=\sum_{n=0}^{\infty} c_{n} x^{n}$, where
$c_{0}=\ldots, \quad c_{1}=廿, \quad c_{2}=\ldots, \quad c_{3}=\ldots, \quad c_{4}=\ldots, \quad c_{5}=\ldots, \quad c_{6}=\ldots, \quad c_{7}=\ldots$.
4. Now, do your problem 5 on the WeBWorK.
