MAT 239 (Differential Equations), Prof. Swift
 Worksheet 28, Eigenvalues and Eigenvectors

The eigenvalues/eigenvectors of a matrix A satisfy $A \mathbf{v}=\lambda \mathbf{v}, \mathbf{v} \neq \mathbf{0}$, and $\operatorname{det}(A-\lambda I)=0$.

1. Let $A=\left[\begin{array}{lll}4 & 3 & 1 \\ 1 & 5 & 1 \\ 0 & 1 & 9\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.

Yes/No: Is $A \mathbf{v}=3 \mathbf{v}$?
Yes/No: Does that imply that 3 is an eigenvalue of A ? Why not?
Yes/No: Is 3 an eigenvalue of A ? (Hint: The determinant of $\left[\begin{array}{lll}1 & 3 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 6\end{array}\right]$ is -6 .) Why not?
2. The figure shows 3 vector fields $\mathbf{F}(\mathbf{x})=A \mathbf{x}$. If A has real eigenvalues, draw the lines that are the eigenvector directions, and indicate if the corresponding eigenvalue is positive or negative.

2. Compute the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right]$, and find the general solution to .
3. Solve the IVP $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{x}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, with the matrix A defined in problem 2.

