MAT 239 (Differential Equations), Prof. Swift
Eigenvalue hack, and solving $\mathrm{x}^{\prime}=A \mathrm{x}$ when $\lambda_{1} \neq \lambda_{2}$ are real
The eigenvalues λ_{1} and λ_{2} of a matrix 2×2 matrix A, satisfy

$$
\lambda_{1}+\lambda_{2}=T \text { and } \lambda_{1} \cdot \lambda_{2}=D
$$

where $T=\operatorname{Tr}(A)$ is the trace of A (the sum of the diagonal entries) and $D=\operatorname{Det}(A)$ is the determinant of A. That is enough to find the eigenvalues of A in many cases. If that doesn't work, use the fact that the characteristic equation of A is $\lambda^{2}-T \lambda+D=0$.

1. Use this hack to find the eigenvalues of the following matrices:
$\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$

$$
\left[\begin{array}{ll}
0 & -1 \\
1 & -2
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
-3 & 4 \\
-2 & 1
\end{array}\right]
$$

2. Fill in the first row so the eigenvalues are 3 and -2 .
$\left[\begin{array}{ll}1 & 2\end{array}\right]$
3. Find the general solution to the system $\frac{d \mathbf{x}}{d t}=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right] \mathbf{x}$, also written $\mathbf{x}^{\prime}=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right] \mathbf{x}$.
