MAT 239 (Differential Equations), Prof. Swift

 The Swift Method for Repeated Eigenvalues, and Normal Modes1. Use the Swift method to solve the IVP $\frac{d \mathbf{x}}{d t}=\left[\begin{array}{cc}7 & 1 \\ -4 & 3\end{array}\right] \mathbf{x}, \quad \mathbf{x}(0)=\left[\begin{array}{c}2 \\ -5\end{array}\right]$.

Note: Paul does this the hard way in example 1 of his notes on repeated eigenvalues.
2. Find the general solution to $\frac{d^{2} \mathbf{x}}{d t^{2}}=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right] \mathbf{x}$.

Hint: Use the fact that if $A \mathbf{v}=-k^{2} \mathbf{v}$, then $\mathbf{x}(t)=\left(c_{1} \cos (k t)+c_{2} \sin (k t)\right) \mathbf{v}$ is a solution to $\frac{d^{2} \mathbf{x}}{d t^{2}}=A \mathbf{x}$. This family of solutions is called a normal mode of the system.

