MAT 239 (Differential Equations), Prof. Swift Worksheet 18, The General Solution of a LHODECC.

1. Suppose the characteristic equation of a LHODECC for y(x) factors over the real numbers as $(r^2+4)^2(r-5)^3=0$.

(a) What are the roots of the characteristic equation? [- ±2i, ±2i, 5,5.5]

(b) What is the general solution of the LHODECC?

y = (, cos(2x) + (,5m(2x)+(,xcs(2x)+C4x5m(2x)+C525x+(,xe5x+C7x3e5x

2. Suppose one solution of a 5th order LHODECC is $y(x) = 3x^2 + 4e^x \sin(2x)$.

(a) What are the roots of the characteristic equation of the LHODECC? 0,0,0, 1±20

(b) What is the simplest general solution of a LHODECC that contains the function $y(x) = 3x^2 + 4e^x \sin(2x)$?

y = C, +(2x + C3 x2+ C4e x05 (2x) + C5- 0x 51 \((2x) \).

Rule 1 says that the first guess for the form of the particular solution to a LNODECC, L[y] = g(x) is the simplest general solution of a LHODECC that contains the function g(x).

3. Use Rule 1 and Problem 2 to find the form of the particular solution to the LNODECC $y'' + y' + y = 3x^2 + 4e^x \sin(2x)$. This will have 5 undetermined coefficients A, B, C, D, and E.

JP = 4+Bx+Cx2+DoxWS(2x)+Eoxsin(2x).

4. (a) Use Rule 1 to find the form of the particular solution to the LNODECC $y'' + y' + y = 3e^{2x}$. This will have a single undetermined coefficient A.

(b) Find a particular solution to that same LNODECC, $y'' + y' + y = 3e^{2x}$.

yp=Ae2x yp'=2Ae2x yb'=4Ae2x $4Ae^{2x} + 2Ae^{2x} + Ae^{2x} = 3e^{2x}$ $(4A + 2A + A) e^{2x} = 3e^{2x}$ 7A = 3 A = 3