MAT 239 (Differential Equations), Prof. Swift Worksheet 23, Driven Oscillators The nondimensional form of the ODE for a driven, damped oscillator is $$y'' + \frac{1}{Q}y' + y = \cos(\omega t),$$ where Q and ω are positive, dimensionless constants. The quality factor Q measures the friction (also called damping), and ω is the ratio of the driving frequency to the natural frequency ω_0 . 1. Use the method of undetermined coefficients to find a particular solution to $y'' + y = \cos(\omega t)$ with $\omega \neq 1$. This is the limit of $Q \to \infty$, which means zero friction. Write down the form of the particular solution y_p , with constants A and B, then find A and B as functions of ω . $$y_p = A \cos(\omega t) + B \sin(\omega t)$$. Rule 2 does Not apply since $\omega \neq 1$. $y_p'' = -A \omega \sin(\omega t) + B \omega \cos(\omega t)$ $y_p'' = -A \omega^2 \cos(\omega t) - B \omega^2 \sin(\omega t)$ $y_p'' + y_p = A(1-\omega^2)\cos(\omega t) + B(1-\omega^2)\sin(\omega t) = 1 \cos(\omega t) + D \sin(\omega t)$ $A(1-\omega^2)=1$, $B(1-\omega^2)=0$ $A(1-\omega^2)=1$, $B(1-\omega^2)=0$ $A(1-\omega^2)=1$, $A(1-\omega^2)=0$ $A(1-\omega^2)=1$, $A(1-\omega^2)=0$ 2. Use the method of undetermined coefficients to find a particular solution to $y'' + \frac{1}{Q}y' + y = \cos(t)$. This is the case where $$\omega = 1$$. Write down the form of y_p , then find A and B as functions of Q . $y_p = A\cos(t) + B\sin(t)$, Rule 2 does not apply, since Q is finite 4p' = - Asm(t) + B ws (+) $$\frac{-A}{R}\sin(t) + \frac{B}{Q}\cos(t) = \cos(t) + 0\sin(t)$$ $$\frac{-A}{Q} = 0$$, and $\frac{B}{Q} = 1$ -: $A = 0$, $B = Q$ Thus, yp=Qsin(t)