MAT 239 (Differential Equations), Prof. Swift Worksheet 27, Systems of First Order ODEs

1. Let $A = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 3 \end{bmatrix}$. Is AB defined? Is BA defined? Compute the matrix product that is defined.

A is
$$2 \times 1$$
, 3×2 AB is not do fined.
 $2 \times 1 \times 3 \times 2$
BA is do fined, and if $\frac{2}{15} = 3 \times 1$ matrix
$$3 \times 2 \times 1$$

$$3 \times 2 \times 1$$

$$BA = \begin{bmatrix} 0 & 1 \\ 2 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & 15 \\ 8 & 19 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 8 \\ 19 \end{bmatrix}$$

2. Write $y'' + \frac{1}{Q}y' + y = \cos(\omega t)$ as a system of 2 first order ODEs for the position y and velocity v.

$$y'=V$$

$$y''=-\frac{1}{2}y'-y+\cos(\omega t)$$

$$y''=V$$

$$y''=V$$

$$y''=-\frac{1}{2}v-y+\cos(\omega t)$$

3. Write the system you found in problem 2 as a single matrix ODE $\frac{d}{dt}\mathbf{x} = A\mathbf{x} + \mathbf{g}(t)$. Start by defining the vector $\mathbf{x} = \begin{bmatrix} y \\ y \end{bmatrix}$.

defining the vector
$$X = \begin{bmatrix} y \\ y \end{bmatrix}$$
, so $dX = dX = \begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} v \\ -dv - y + us(wt) \end{bmatrix}$

$$d \begin{bmatrix} y \\ y \end{bmatrix} = \begin{bmatrix} v \\ -y - dv \end{bmatrix} + \begin{bmatrix} o \\ cos(wt) \end{bmatrix}$$
Note that $v = o \cdot y + 1 \cdot v$

$$d \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} o \\ -1 - dz \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix} + \begin{bmatrix} o \\ cos(wt) \end{bmatrix}$$