Bézier Curve To construct the cubic Bézier curves C_0, \ldots, C_{n-1} in parametric form, where C_i is represented by $$(x_i(t), y_i(t)) = (a_0^{(i)} + a_1^{(i)}t + a_2^{(i)}t^2 + a_3^{(i)}t^3, b_0^{(i)} + b_1^{(i)}t + b_2^{(i)}t^2 + b_3^{(i)}t^3),$$ for $0 \le t \le 1$, as determined by the left endpoint (x_i, y_i) , left guidepoint (x_i^+, y_i^+) , right endpoint (x_{i+1}, y_{i+1}) , and right guidepoint (x_{i+1}^-, y_{i+1}^-) for each $i = 0, 1, \ldots, n-1$: INPUT $$n; (x_0, y_0), \dots, (x_n, y_n); (x_0^+, y_0^+), \dots, (x_{n-1}^+, y_{n-1}^+); (x_1^-, y_1^+), \dots, (x_n^-, y_n^-).$$ OUTPUT coefficients $$\{a_0^{(i)}, a_1^{(i)}, a_2^{(i)}, a_3^{(i)}, b_0^{(i)}, b_1^{(i)}, b_2^{(i)}, b_3^{(i)}, \text{ for } 0 \le i \le n-1\}.$$ Step 1 For each i = 0, 1, ..., n-1 do Steps 2 and 3. Step 2 Set $$a_0^{(i)} = x_i$$; $b_0^{(i)} = y_i$; $a_1^{(i)} = 3(x_i^+ - x_i)$; $b_1^{(i)} = 3(y_i^+ - y_i)$; $a_2^{(i)} = 3(x_i + x_{i+1}^- - 2x_i^+)$; $b_2^{(i)} = 3(y_i + y_{i+1}^- - 2y_i^+)$; $a_3^{(i)} = x_{i+1} - x_i + 3x_i^+ - 3x_{i+1}^-$; $b_3^{(i)} = y_{i+1} - y_i + 3y_i^+ - 3y_{i+1}^-$; Step 3 OUTPUT $(a_0^{(i)}, a_1^{(i)}, a_2^{(i)}, a_3^{(i)}, b_0^{(i)}, b_1^{(i)}, b_2^{(i)}, b_3^{(i)})$. Step 4 STOP.