MAT 461, Partial Differential Equations Prof. Swift

Here is a summary of formulas from MAT 239 (Differential Equations). This is a very condensed summary that I gave as a formula sheet for the final exam. It leaves out a lot of details. There is a link to Paul's notes on our web site.

First order ODEs

These formulas concern solutions to $y^{\prime}=f(y, t)$.
A separable ODE can be written $f(y) d y=g(t) d t$. Integrate both sides (adding a constant immediately) and try to solve for y to get an explicit solution $y=\varphi(t)$. An implicit solutions has the form $F(y, t)=c$.
The standard form for a first order linear ODE is $y^{\prime}+p(t) y=g(t)$. This can be solved using the integrating factor $\mu(t)=\exp \left(\int p(t) d t\right)$.
There is a technique for solving Exact ODEs, and lots of other techniques.

Linear ODEs of order 2 or higher

These formulas concern solutions to $p_{n}(t) y^{(n)}+\cdots+p_{1}(t) y^{\prime}+p_{0}(t) y=g(t)$.
The general solution of an nth order linear homogeneous ODE is $y=c_{1} y_{1}(t)+\cdots+$ $c_{n} y_{n}(t)$, where $\left\{y_{i}(t) \mid 1 \leq i \leq n\right\}$ is a linearly independent set of solutions.
If the ODE is homogeneous $(g=0)$ with constant coefficients, then a real root λ of the characteristic equation corresponds to a solution $y=e^{\lambda t}$ of the ODE.
A complex conjugate pair of roots $\lambda=a \pm i b$ of the characteristic equation corresponds to two solutions $y=e^{a t} \cos (b t)$ and $y=e^{a t} \sin (b t)$ of the ODE.

Repeated roots introduce factors of t to get linearly independent solutions.
For non-homogeneous ODEs $(g(t)$ is not the zero function), then the general solution is $y=y_{h}+y_{p}$, where y_{h} is the generral solution to the associated homogeneous equation, and y_{p} is a particular solution to the non-homogeneous ODE.

