MAT 661 (Applied Mathematics)
 Homework \# 1 due before class Monday, August 24, 2020 Uploaded as a PDF, scanned or LaTeX, via BbLearn

1. Maxwell's equations in free space, using Gaussian Units, are

$$
\nabla \cdot \mathbf{E}=0, \quad \nabla \cdot \mathbf{B}=0, \quad \nabla \times \mathbf{E}=-\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t},
$$

where \mathbf{E} is the electric field and \mathbf{B} is the magnetic field.
(a) Show that the electric field satisfies the wave equation

$$
\begin{equation*}
\frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=c^{2} \nabla^{2} \mathbf{E} \tag{1}
\end{equation*}
$$

where the Laplacian of a vector field means to take the Laplacian of each component. That is, the vector Laplacian of $\mathbf{E}=\left(E_{1}, E_{2}, E_{3}\right)$ is $\nabla^{2} \mathbf{E}=\left(\nabla^{2} E_{1}, \nabla^{2} E_{2}, \nabla^{2} E_{3}\right)$. You may assume that all functions are diffentiable as often as needed (they are C^{∞}). You may also use, without proof, a vector identity for $\nabla \times(\nabla \times \mathbf{A})$ that you can find on-line or elsewhere. (I searched for "vector calculus identities").
(b) Verify that $\mathbf{E}(x, y, z, t)=E \sin (k z-c k t) \hat{\mathbf{i}}$ solves the wave equation (1) for any scalar constants E and k. Here $\hat{\mathbf{\imath}}=(1,0,0)$ is the unit vector in the x-direction. Find the magnetic field for this light wave traveling in the z-direction. Try to sketch the electric and magnetic fields.
(c) Light is a transverse wave. This means that the direction of the electric and magenetic fields are perpendicular to the direction of propogation. If the z is replaced by x in the solution in part (a), we get $\mathbf{E}(x, y, z, t)=E \sin (k x-c k t) \hat{\mathbf{1}}$, which is not a transverse wave. While this new function satisfies the wave equation (1) it is not a solution to Maxwell's equations. Why?
2. A useful tool in studying ODEs and PDEs that come from physics is nondimensionalization. The driven, damped pendulum has this equation of motion $F=m a$, actually $m a=F$, for the tangential acceleration:

$$
m \ell \frac{d^{2} \theta}{d t^{2}}=-\gamma \frac{d \theta}{d t}-m g \sin (\theta)+F \cos \left(\omega_{d} t\right) .
$$

The unit of mass m is kilograms. We write this statement as $[m]=\mathrm{kg}$. Similarly, $[\ell]=\mathrm{m}$ (meters), $[t]=\mathrm{s}$ (seconds). This is the MKS system: (meters, kilograms, seconds). Angles like θ, measured in radians, are unitless, so $[\theta]=1$. The acceleration of gravity g has units $[g]=\mathrm{m} / \mathrm{s}^{2}$. Define $\omega_{0}=\sqrt{g / \ell}$. Show that you can write the equations in terms of the dimensionless time variable $\omega_{0} t=\bar{t}$ as

$$
\frac{d^{2} \theta}{d \bar{t}^{2}}=-c \frac{d \theta}{d \bar{t}}-\sin (\theta)+\rho \cos (\bar{\omega} \bar{t})
$$

Find the constants dimensionless constants c and ρ and $\bar{\omega}$ in terms of the original constants m, ℓ, γ, g, and F.

Read Chapter 1, sections 1 and 2, and do problems 1.1, 1.6, 2.1, 2.2, 2.5

