Problem II 4.2-type problem.
Verify that the curve C is an integral curve of V , and derive a formula for infinitely many integral surfaces of V containing C .
$V=(x,-y, 0), C: x=t, y=-1 / t, z=0$ for all $t>0$.

Answer: The surface with equation
$\mathrm{F}(\mathrm{xy}, \mathrm{z})=0$
is an integral surface for any smooth function $F: R^{\wedge} 2->R$ that satisfies $F(-1,0)=0$.
I will show a "model solution" in this notebook. I will also illustrate this result, showing the surfaces obtained by a "standard" choice of F.

Solution:
Two Functionally Independent First Integrals (FIFIs) for V are
$\ln [\cdot]:=\mathbf{u} 1\left[\mathbf{x}_{-}, \mathbf{y}_{\mathbf{\prime}}, \mathbf{z}_{-}\right]:=\mathbf{x y}$
u2[$\left.x_{-}, y_{-}, z_{-}\right]:=z$
The hardest part of the problem is determining these 2 FIFIs and verifying that they are indeed functionally independent by computing the cross product of the gradients.

To show that C is an integral curve, compute
$\mathrm{U} 1(\mathrm{t})=\mathrm{u} 1(\mathrm{t},-1 / \mathrm{t}, 0)=(\mathrm{t})(-1 / \mathrm{t})=-1($ for all $\mathrm{t}>0)$ and
$\mathrm{U} 2(\mathrm{t})=\mathrm{u} 2(\mathrm{t},-1 / \mathrm{t}, 0)=0($ for all $\mathrm{t}>0)$

Since $\mathrm{U} 1(\mathrm{t})$ and $\mathrm{U} 2(\mathrm{t})$ are constant functions, the curve C is an integral curve of V .

Any smooth function $F: R^{\wedge} 2 \rightarrow R$ will give a first integral $F(x y, z)$ of V by Theorem 3.1. This integral surface will contain C if and only if $\mathrm{F}(-1,0)=0$, as shown in the proof of Theorem 4.3.
(End of the "model solution".)
Now lets illustrate this result with a one-parameter family of functions F that satisfy $F(-1,0)=0$, out of the unfathomably largely infinitely many such functions.

Here's a tangent for you: If we assume the continuum hypothesis, the cardinality of the set of functions F defined below is Aleph-1. I don't know set theory very well, but I think the cardinality of all functions $F: R^{\wedge} 2 \rightarrow R$ that satisfy $F(-1,0)=0$ is Aleph-2. (That's what I mean by unfathomably largely infinitely many such functions.)

My choice for a function $F: R^{\wedge} 2 \rightarrow R$ that satisfies $F(c 1, c 2)=0$ has a parameter θ. So I actually define a function $F: R^{\wedge} 5->R$, with $c 1, c 2$, and θ as the last three arguments of the function. The set $F(u 1, u 2, c 1$, $c 2, \theta)=0$ is a line in through the point $(c 1, c 2)$ that is perpendicular to the vector $(\cos (\theta), \sin (\theta))$.


```
    {c1, c2} = {-1, 0};
    ContourPlot [F[u1, u2, c1, c2, 0] == 0, {u1, -3, 3}, {u2, - 3, 3},
    Epilog }->{\operatorname{Arrow[{{c1, c2}, {c1, c2} + {Cos[0], Sin[0]}}], Point[{c1, c2}]},
    FrameLabel }->\mathrm{ {"u}\mp@subsup{\mathbf{u}}{1}{\prime}, "\mp@subsup{u}{2}{\prime"}, RotateLabel }->\mathrm{ False]
```


Now we plot the family of integral surfaces that go through C: $x=t, y=-1 / t, z=0$,
depending on the parameter θ. We have already determined that $\mathrm{c} 1=-1$ and $\mathrm{c} 2=0$.
You must first run the cells where $u 1, u 2$, and F are defined, before running this cell. I like to select all (Ctrl A) and run (Shift-ENTER, or bottom-right ENTER on some keyboards).

You can use the slider to change θ.
Clicking the + to the right of the slider allows you to see the value of θ and also animate the figure!
$\operatorname{mn}[\theta]=$ Manipulate [
$\mathrm{L}=3$; (* $-\mathrm{L} \leq \mathrm{x}, \mathrm{y} \leq \mathrm{L}$ *)
$H=2 ;(*-H \leq z \leq H *)$
c1 = -1;
c2 = 0;
integralCurve $=\operatorname{Graphics3D}[\operatorname{Tube}[\operatorname{Table}[\{t,-1 / t, 0\},\{t, 1 / L, L, 1 /(5 L)\}], .07]]$;
integralSurface $=$ ContourPlot3D[F[u1[x,y,z], u2[x,y,z], c1, c2, $\theta]=0$,
$\{x,-L, L\},\{y,-L, L\},\{z,-H, H\}, M e s h \rightarrow$ False];
Show[integralSurface, integralCurve, AxesLabel \rightarrow \{"x", "y", "z"\}, BoxRatios \rightarrow Automatic]
, $\{\{\theta, 2.2\}, 0, \pi\}]$
Now do the same thing for the integral curve C: $x=0, y=-t, z=0, t>0$.

In this case, $\mathrm{c} 1=\mathrm{u} 1(0,-\mathrm{t}, 0)=0$, and $\mathrm{c} 2=\mathrm{u} 2(0,-\mathrm{t}, 0)=0$.

```
In[\rho]:= Manipulate[
    L = 3; (* -L \leq x,y \leq L *)
    H = 2; (* -H \leq z \leq H *)
    c1 = 0;
    c2 = 0;
    integralCurve = Graphics3D[Tube[Table[{0, -t, 0}, {t, 0, L, L}], .07] ];
    integralSurface = ContourPlot3D[F[u1[x, y, z], u2[x, y, z], c1, c2, 0] == 0,
        {x, -L, L}, {y, -L, L}, {z, -H, H}, Mesh }->\mathrm{ False];
Show[integralSurface, integralCurve, AxesLabel }->\mathrm{ {"x", "y", "z"},
    BoxRatios }->\mathrm{ Automatic]
    , {{0, 2.2}, 0, \pi}]
```

