
An Algorithm for Finding the Jordan Canonical Form of a Matrix
Jim.Swift@nau.edu

Given a square n × n matrix A, this algorithm finds the matrix P such that B :=
P−1AP is in Jordan Canonical Form (JCF). It is assumed that A has integer entries,
or possibly rational entries, so all calculations can be done exactly. This algorithm is
not appropriate if the entries are floating point numbers.

See section 1.8 in Lawrence Perko’s book “Ordinary Differential Equations and
Dynamical Systems” for background. We follow his notation, but the algorithm given
here is much more efficient than the one quoted in the book.

This algorithm is based on Chapter 9 in the Schaum’s Outline on Matrix Oper-
ations, by Richard Bronson. The algorithm is for humans rather than computers,
since it takes some higher-order thinking to implement in step 2.2.

• Step 1: Find the eigenvalues of A. This is hard by hand. I use Mathemat-
ica’s Eigenvalues[] command. We assume that the multiplicity of at least one
eigenvalue is larger than 1. Otherwise we would just diagonalize the matrix!

• Step 2: For each eigenvalue λ of A, let m denote the multiplicity of the eigen-
value. We will find an n × m matrix Pλ that contains m columns which are
generalized eigenvectors for λ. Initialize with Pλ = 0.

– step 2.1: Compute (A− λIn)k, rref((A− λIn)k) and the deficiency index
δk = dim(Ker((A − λIn)k)) for k = 1, 2, . . . until δk = m. Note that δk is
the number of zero rows in the reduced row echelon form of (A− λIn)k. I
use Mathematica’s RowReduce[] function.

– step 2.2: Construct the chain diagram for this λ. The row at height
(or rank) k = 1 has δ1 boxes. The rows at height ≤ k have δk boxes.
The boxes in the chain diagram should be left-justified. Each column
represents a chain of generalized eigenvalues. The chain diagram defines
the size of the chains sj for j = 1, 2, . . . δ1. This gives a partition of the
integer m = s1 + s2 + · · · + sδ1 with s1 ≥ s2 ≥ · · · ≥ sδ1 ≥ 1. Then put

the generalized eigenvector v
(k)
j in chain j at height k. These generalized

eigenvectors are all nonzero vectors that satisfy the “chain condition”

(A− λIn)v
(k)
j = v

(k−1)
j , for k > 1, and (A− λIn)v

(1)
j = 0.

For example, if m = 7, δ1 = 3, δ2 = 5 and δ3 = 7, then we get the partition
7 = 3 + 3 + 1 (s1 = s2 = 3, s3 = 1) and the chain diagrams below.

– step 2.3: For j = 1, 2, . . . , δ1, choose the top vector of the jth chain, v
(sj)
j ,

such that the bottom of the chain, v
(1)
j = (A − λIn)sj−1v

(sj)
j , is nonzero

and linearly independent from the eigenvectors chosen earlier. (These are

the eigenvectors v
(1)
1 ,v

(1)
2 , . . . ,v

(1)
j−1.) Compute all the vectors in the chain,

and add these generalized eigenvectors to P with k increasing. That is, Pλ
is updated from Pλ = [. . .] to Pλ = [. . . v

(1)
j v

(1)
j v

(2)
j . . .v

(sj)
j]

In our example, the resulting matrix is Pλ = [v
(1)
1 v

(2)
1 v

(3)
1 v

(1)
2 v

(2)
2 v

(3)
2 v

(1)
3]

after step 2.3 is finished.

• Step 3: Construct the full, n× n matrix P by concatenating the Pλ computed
for each eigenvalue.

Then, B := P−1AP is in JCF, and thus exp(Bt) is easily computed. The general
solution to ẋ = Ax is x(t) = P exp(Bt)c, and the solution to the IVP with x(0) = x0

is x(t) = P exp(Bt)P−1x0.
If some of the eigenvalues of A are complex and non-real, and A has real entries,

then P will have complex entries but exp(At) = P exp(Bt)P−1 will be real. On
the other hand, the more geometrically intuitive form x(t) = P exp(Bt)c may give
complex valued solutions if the vector of constants c is not chosen correctly. There
is a link on my web site to “The general solution for a 4x4 matrix with repeated
complex conjugate eigenvalues.” describing how to deal with this.

—————————————————
Some examples using this algorithm are available as “ExamplesFromPerko.pdf”

on my web site. The worked examples are from Section 1.8 in “Differential Equations
and Dynamical Systems” by Lawrence Perko (Third Edition).

Confession
I (JWS) don’t know of a proof that this algorithm works! But “Hey, what can

go wrong?” The problem is that perhaps the generalized eigenvectors you obtain are
not linearly independent. I should mention that if the matrix P you obtain by the
algorithm is nonsingular then it will put A into JCF.

Bronson’s algorithm in the Schaum’s outline (first edition) says that in my step

2.3 we should choose v
(sj)
j to be “linearly independent from all previously determined

generalized eigenvectors associated with λ.” That is potentially a lot more checking
than I do, and it’s not correct! See the scanned “Example 4 Done Incorrectly”,
the last page of “ExamplesFromPerko.pdf” on my web site. It gives and example
where following Bronson’s algorithm gives a linearly dependent set of generalized
eigenvectors. It is my conjecture (as stated in step 2.3) that we only need to check
that the bottom row of true eigenvectors is linearly independent.

Another example of what can go wrong is described in the note in the box of
Example 3 in “ExamplesFromPerko.pdf”. If we choose the size 1 chain first, and then
the size 2 chain, we might not be able to get three linearly independent generalized
eigenvectors. That is why both my algorithm and Bronson’s tell us to choose the
chains in order of decreasing size.

