COMPLEX EIGENVALUES

MAT 665, JAMES W. SWIFT

Example: Find the general solution and sketch the phase portrait for

$$
\dot{\mathbf{x}}=\left[\begin{array}{ll}
-2 & 3 \\
-1 & 0
\end{array}\right] \mathbf{x}
$$

In class, we found that an eigenvalue of A is $\lambda=-1+\sqrt{2} i$, and an associated eigenvector is $\mathbf{w}=[1-\sqrt{2} i, 1]^{T}=[1,1]^{T}+i[-\sqrt{2}, 0]^{T}$.

Therefore the general solution is

$$
\mathbf{x}=r_{0} e^{-t}\left\{\left[\begin{array}{c}
-\sqrt{2} \\
0
\end{array}\right] \cos \left(\sqrt{2} t+\theta_{0}\right)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] \sin \left(\sqrt{2} t+\theta_{0}\right)\right\}
$$

The phase portrait in the \mathbf{y} and \mathbf{x} coordinates are shown in this figure

Note that the solutions always rotate counter-clockwise in the \mathbf{y} coordinates, and in the \mathbf{x} coordinates they go from \mathbf{v} (black) toward \mathbf{u} (red).

[^0]
[^0]: September 23, 2011

