
COMPLEX EIGENVALUES

MAT 665, JAMES W. SWIFT

This handout concerns the solution to ẋ = Ax, where A is a square matrix with real entries and
simple complex (non-real) eigenvalues.

For simplicity, assume that A is 2 × 2. We will do other cases by example. Following Perko’s
book, assume that

Aw = (a + ib)w,

with a, b ∈ R and b > 0. Since A has real entries, Aw = (a − ib)w. We can write the (complex)
eigenvector w in terms of its real and imaginary parts as

w = u + iv

where u and v both have real entries. There is quite a bit of freedom in choosing u and v, since
αw is an eigenvector of A for any α ∈ C.

We can find the general (real-valued) solution to ẋ = Ax by following the usual procedure for
distinct eigenvalues:

x(t) =
[

w w
] [

e(a+ib)t 0
0 e(a−ib)t

] [
γ
γ

]
= we(a+ib)tγ + c.c.

where the arbitrary constant is γ ∈ C, and the “+ c.c.” means to add the complex conjugate of
the preceding expression. The second constant is γ to ensure that x(t) is real-valued.

To obtain a nice expression for the general solution, let γ = −iroe
iθo/2, where ro, θo ∈ R. The

general solution is

(1) x(t) = roe
at

(
v cos(bt + θo) + u sin(bt + θo)

)
.

with the two arbitrary constants ro and θo.
While the general solution in equation (1) is good for understanding the trajectories, it is not

the best form for getting a solution to the IVP ẋ = Ax, x(0) = xo. To solve the IVP, first let
γ = −i(c1 + ic2)/2, with c1, c2 ∈ R. When the dust settles, the general solution can be written as

x(t) = eat
[

v u
] [

cos(bt) − sin(bt)
sin(bt) cos(bt)

] [
c1

c2

]

where the two arbitrary constants are c1 and c2. Following Perko, define P = [v u]. Since x(0) = xo,

the constants satisfy P

[
c1

c2

]
= xo, which can be solved to give

[
c1

c2

]
= P−1xo so the solution

to the IVP is

(2) x(t) = eatP

[
cos(bt) − sin(bt)
sin(bt) cos(bt)

]
P−1xo,

and we have finally reproduced Perko’s solution.
Now, consider the ODE in the y coordinates defined by x = Py. The ODE is

ẏ =
[

a −b
b a

]
y
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with initial conditions yo = P−1xo =
[

c1

c2

]
. The constants ro and θo in the general solution (1)

are related to c1 and c2 by c1 + ic2 = roe
iθo , or

c1 = ro cos(θo)
c2 = ro sin(θo).

Thus, ro and θo are the polar coordinates of the initial point yo =
[

c1

c2

]
in the new coordinates.

The solution in the y system, in polar coordinates, is r(t) = roe
at and θ(t) = bt+θo. The trajectories

lie on logarithmic spirals r = roe
a(θ−θo)/b.

Example: Suppose that A is a real 2× 2 matrix, and Aw = 2iw, where w =
[

1 + 4i
3

]
. We can

write down the general solution by inspection, using equation (1):

x(t) = ro

([
4
0

]
cos(2t + θo) +

[
1
3

]
sin(2t + θo)

)
.

Note that the P matrix does not need to be inverted, and no matrix multiplication is needed. If
you want to solve the initial value problem, equation (2) is better, but the general solution based
on equation (1) is easier to understand geometrically.

Note that we can figure out A in this case by using P =
[

4 1
0 3

]
and B =

[
0 −2
2 0

]
. Then

some matrix algebra shows that

A = PBP−1 =
[ 1

2 −17
6

3
2 −1

2

]
.

Do not be alarmed during an exam if I present the information about a matrix in a form similar
to the first sentence of this example. I am trying to be nice to you by giving you the eigenvalues
and eigenvectors on platter.

Example: For the example on pages 29 and 30 of Perko’s book, the general solution can again be
obtained by inspection. Here it is natural to use the constants r1 and θ1 for the part of the solution
associated with λ1 = 1 + i, and r2 and θ2 for the part coming from λ2 = 2 + i.

x(t) = r1e
t







1
0
0
0


 cos(t + θ1) +




0
1
0
0


 sin(t + θ1)


+r2e

2t







0
0
1
0


 cos(t + θ2) +




0
0
1
1


 sin(t + θ2)


 .

Example: In the example on pages 30 and 31, the real matrix A satisfies Av(1) = −3v(1) and
Aw(2) = (2 + i)w(2), where

v(1) =




1
0
0


 and w(2) = u(2) + iv(2) =




0
1 + i

1


 .

The general solution in this case is

x(t) = c1e
−3tv(1) + roe

2t
(
v(2) cos(t + θo) + u(2) sin(t + θo)

)
,

where I have used the constants ro and θo for the complex eigenvalue. It is clear from this vector
form of the general solution that the stable subspace Es = span{v(1)} and the unstable subspace
Eu = span{u(2),v(2)} are invariant. (That is, an initial condition in one of these invariant subspaces
leads to a solution that stays in the invariant subspace for all time.)


