
MAT 665, Differential Equations, Prof. Swift
Formula sheet from MAT 239. Notes with • for MAT 665

First order ODEs: • dy
dx

= f(x, y) (which is used here) or dy
dt

= f(t, y) or dx
dt

= f(t, x).

Separation of variables is the simplest method.

The standard form for a first order linear ODE is y′+ p(x)y = g(x). This can be solved using
the integrating factor µ(x) = exp(

∫
p(x) dx).

A first order ODE in differential form, P (x, y)dx + Q(x, y)dy = 0, is exact if and only if
Py(x, y) = Qx(x, y). If the ODE is exact, the solutions are on level curves F (x, y) = C, with
Fx = P and Fy = Q.

Linear ODEs of order 2 or higher

A linear homogeneous ODE can be written as L[y] = 0, where L = pn(t)
dn

dtn
+ · · ·+ p1(t)

d

dt
+

p0(t) is an n order linear operator. The ODE is usually written as an(t)
dny

dtn
+ · · ·+ a1(t)

dy

dt
+

a0(t)y = 0 The general solution is y(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t), a linear combination
of n linearly independent solutions.

A real root r of the characteristic equation corresponds to a solution y = ert of a linear,
homogeneous ODE with constant coefficients (LHODECC).

A complex conjugate pair of roots r = a± ib of the characteristic equation corresponds to two
solutions y = eat cos(bt) and y = eat sin(bt)of the LHODECC.

Repeated roots introduce factors of t to get linearly independent solutions to a LHODECC

The general solution to a nonhomogeneous linear ODE L[y] = g(t), for a fixed linear operator
L and function g, is y = yh+yp, where yh is the general solution to the associated homogeneous
ODE, and yp is one particular solution to the nonhomogeneous ODE.

• By analogy, the general solution to the matrix equation Ax = b with a fixed A ∈ Rm×n and
b ∈ Rm is x = xh + xp ∈ Rn, where xh is the general solution to the associated homogeneous
equation Ax = 0 and xp is one particular solution to the nonhomogeneous equation Ax = b.



Systems of ODEs

These formula concern the solution to x′ = Ax, where A is a 2× 2 matrix with constant, real
entries. The eigenvalues of A satisfy det(A− λI) = 0, and the associated eigenvectors satisfy
Av = λv, or (A− λI)v = 0.

Case 1. A has real, distinct eigenvalues, λ1 6= λ2.

The general solution is x(t) = c1e
λ1tv1 + c2e

λ2tv2 . The constants c1 and c2 are determined
by the initial condition.

Case 2. A has complex eigenvalues λ = a ± ib. To solve the IVP x′ = Ax, x(0) = x0, first
compute x1 = (A− aI)x0. Then the solution to the IVP is

x(t) = eat
(
x0 cos(bt) + x1

1
b

sin(bt)
)

• Most texts use complex eigenvectors. Let λ1 = a + ib, and v1 = Re(v1) + i Im(v1). Two
linearly independent solutions are Re

(
exp(λ1t)v1

)
and Im

(
exp(λ1t)v1

)
. A calculation shows

that the general solution can be written as

x(t) = c1e
at
(
Re(v1) cos(bt)− Im(v1) sin(bt)

)
+ c2e

at
(
Im(v1) cos(bt) +Re(v1) sin(bt)

)
.

Case 3. A has repeated, real eigenvalues, λ1 = λ2. To solve the IVP x′ = Ax, x(0) = x0,
first compute x1 = (A− λ1I)x0. Then the solution to the IVP is

x(t) = eλ1t (x0 + x1t)

• In MAT 665 we will fully develop the solutions of linear ODEs with repeated roots.

Nonhomogeneous: The general solution to x′ = Ax + g(t) is x(t) = xh(t) + xp(t), where
xh(t) is the general solution to the homogeneous system x′ = Ax and xp(t) is one particular
solution to the nonhomogeneous system.


