

MAT 665, Differential Equations, Prof. Swift

MAT 239 Review

This is a subset of a final I gave for MAT 239 (Differential Equations) in the past.

1. Solve the ODE. (You do not need to show your work *on this problem*. Just write down the solution, if you know it.)

(a) $\frac{dy}{dt} = 3y, y(0) = 2.$ (b) $\frac{d^2y}{dt^2} = -9y$ (c) $\frac{dy}{dt} = 2(y - 1)$
 (d) $\frac{d^3y}{dt^3} = 0$ (e) $\frac{d^2y}{dt^2} + t^2 \frac{dy}{dt} + y^2 = 0, y(0) = 0, y'(0) = 0.$

2. Find the general solution to $y' + \frac{2}{t}y = t.$

3. (a) Find an explicit solution to the IVP $\frac{dy}{dt} = y^3, y(0) = 1.$
 (b) What is the interval on which the solution to part (a) is defined?
 (c) Sketch the solution to part (a).

7. In this problem we will model pollution of a lake. Assume that the volume of the lake is 10^6 cubic meters. Initially the water in the lake is pure, but at time $t = 0$ a trans fat factory starts polluting the lake by pumping in effluent with a concentration of 2 kilograms per cubic meter of “substance F”. The effluent is pumped in at a rate of 100 cubic meters per day. There is also a source of pure water entering the lake at a rate of 900 cubic meters per day. The pollutant in the lake is well mixed, and the mixed water drains out of the lake at the rate of 1000 cubic meters per day. (Thus, the volume of the lake stays at a constant 10^6 cubic meters.)

(a) Write down the IVP for $y(t)$, the kilograms of substance F in the lake after the factory has been open t days.
 (b) Solve the IVP. (You may solve by inspection.)
 (c) How many kilograms of substance F are in the lake in the limit $t \rightarrow \infty$?

8. Solve the IVP $y'' + 3y' + 2y = 0, y(0) = 0, y'(0) = 1.$

9. This problem concerns a linear nonhomogeneous ODE $L[y] = g(t).$

Suppose that:

$y_1(t)$ satisfies the ODE with the initial conditions $y(0) = 1, y'(0) = 0,$
 $y_2(t)$ satisfies the ODE with the initial conditions $y(0) = 0, y'(0) = 1,$ and
 $y_3(t)$ satisfies the ODE with the initial conditions $y(0) = 0, y'(0) = 0.$

Find the solution to the ODE with the initial conditions $y(0) = 3, y'(0) = 4.$
 (Your answer will be a linear combination of $y_1, y_2,$ and $y_3.$)

13. Find the general solution to $\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{x}.$

14. Find the general solution to $\frac{d\mathbf{x}}{dt} = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} \mathbf{x}.$

15. Consider the second order ODE $ay'' + by' + cy = 0$, where a , b , and c are constants.

(a) Assume $a \neq 0$. Let $x_1 = y$ and $x_2 = y'$, and convert the second order ODE into the system $\mathbf{x}' = A\mathbf{x}$.

(b) Show that the characteristic equation of the second order ODE, namely $a\lambda^2 + b\lambda + c = 0$, has the same set of roots as the eigenvalues of the matrix A .