

Northern Arizona University
College of the Environment, Forestry, and Natural Sciences
Department of Mathematics and Statistics

MAT 665 (Ordinary Differential Equations)

Syllabus for Spring 2026, Section 1 (Class Number 11362)
3 Credit Hours, MWF 11:30-12:20 in Adel Math Building 206

Instructor Information

Instructor: Jim Swift Adel Math Bldg. 110 523-6878 Jim.Swift@NAU.edu

Office Hours:

Monday 1:00-2:00,

Tuesday and Thursday 11:30-12:30, and

Friday 1:00-3:00. If these times are inconvenient, you can make an appointment, or drop by my office any time.

Class website: <https://ac.nau.edu/~jws8/classes/665.2026.1/>

Course Description

Text: *Differential Equations and Dynamical Systems*, by Lawrence Perko (Third Edition).

Prerequisite: A grade of C or better in MAT 239 (Differential Equations), which is waived for GTAs, and MAT 431 (Real Analysis), or the equivalent.

Content/Outline: This course is about exact solutions to linear Ordinary Differential Equations (ODEs) and the qualitative theory of nonlinear ODEs. Although an undergraduate course gives a “bag of tricks” for finding analytic solutions, there is usually no closed-form solution of nonlinear ODEs. Chapter 1 covers linear systems of ODEs, and then we use this to get local information near an equilibrium point in Chapter 2. Then we will do selected topics from Chapters 3 and 4, which are about global features of solutions to ODEs.

Student Learning Outcomes: Students will learn how to solve systems of linear first order differential equations of the form $\frac{d\mathbf{x}}{dt} = A\mathbf{x}$, where A is a constant matrix. This involves quite a bit of “applied linear algebra.” Non-constant matrices $A(t)$ make the ODE tricky, and the student will get some experience with these. The student will learn many qualitative techniques for analyzing solutions to nonlinear ODEs of the form $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x})$. In particular, the student will learn to linearize about equilibrium points \mathbf{x}^* , which satisfy $\mathbf{f}(\mathbf{x}^*) = 0$. The student will learn qualitative techniques to study periodic solutions of ODEs, which satisfy $\mathbf{x}(t+T) = \mathbf{x}(t)$ for all t and some positive constant T . The student will learn a bit about bifurcation theory, which concerns differential equations $\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, \lambda)$ depending on the parameter λ .

Course Structure The class will use lecture-discussion format.

Assessment of Student Learning Outcomes

Homework: (30% of the final grade) You know by now that it is necessary to practice math to learn it. You are *allowed* and *encouraged* to work together on homework. The homework does not need to be typeset. I suggest you use AI sparingly: try to do the problems first without resorting to AI. You may use AI if you are stuck, or to check your work.

Midterm: (30% of the final grade) There will be 1 in-class midterm, on March 6, the Friday before Spring Break. Not computers or phones, and no AI, are allowed on the exams.

Final Exam: (40% of the final grade) The Final Exam is scheduled for Wednesday, May 6 from 10:00 to 12:00.

Course Policies

Calculators and Computers: Most of the work in this class does not require calculators. There will be some use of computers. For example, a problem might require you to modify a MATLAB program that I will supply to you.

Late Homework: I will handle requests on a case-by-case basis, but please contact me before the due date.

Missed Class Days: It is important and required that you come to class every day. I will give excused absences for institutional excuses, illness, or other reasons that I approve. Please notify me of an absence by e-mail or voice mail *before* class if possible. Furthermore, if you are late and I take roll before you arrive, then you will be counted absent.

Makeup Exams: A similar policy to “Missed Class Days” holds. I will give a makeup exam for illness or other emergencies. Please notify me that you will miss an exam by e-mail or voice mail *before* the exam if possible. I may give an exam the day before Thanksgiving; if so you may take the exam early on the Tuesday before Thanksgiving.

Career Readiness Skills In every class you take at NAU, you learn professional skills that can support your future career. There are several ways that this course can help you meet and excel at your job goals and life desires. Below is a list of in-demand skills from National Association of Colleges and Employers (NACE) you could practice in this class:

- **Communication:** Demonstrate the ability to articulate mathematical concepts clearly and concisely, whether through written explanations, oral presentations, or visual representations, ensuring comprehension by peers.
- **Critical Thinking:** Demonstrate the ability to solve mathematical problems by considering the context in which they arise, ensuring that solutions are relevant and applicable to real-world situations.
- **Professionalism:** Uphold academic integrity and accountability in mathematical assignments, demonstrating honesty and ethical behavior in the completion of individual and group tasks.

- Teamwork: Collaborate actively with classmates to achieve common mathematical goals, working collectively on assignments, projects, or problem-solving exercises to enhance the overall learning experience.

Carreer Readiness Resources

- LinkedIn: CEFNS Career Development
www.linkedin.com/in/cefns-career-development-072715233
- LinkedIn: NAU Career Development
<https://www.linkedin.com/company/nau-career-development/>
- Handshake:
<https://nau.joinhandshake.com/login>
- Udemy: Online courses and career searching advice
<https://in.nau.edu/its/udemy/>
 Log in with your NAU email account and search NAU Career Steps
- O*net Online: Occupation exploration reports
<https://www.onetonline.org/>
- Labor Market Insights
<https://frankecareer.nau.edu/labor-market-insights/>

Academic Honesty: Do not look at other people's exams during in-class tests. You may not use cell phones or other electronic communication devices during the exams. Groundrules for take-home exams will be clearly explained. You may seek help from me and other students for the homework, but please do your own work.

Department and University Policies: Our class web site has links to the Departmental and University Policies at
<https://naumathstat.github.io/DoMS-Misc/DoMSSyllabusStatements-Spring2026/> and
<https://ac.nau.edu/~jws8/classes/Syllabus-Policy-Statements.pdf>

Amendments: Any changes to this syllabus will be announced in class, and the updated version will be posted on my website. This version: January 10, 2026.