MAT 667 (Dynamical Systems)

 Homework \#5, Due Wednesday, April 19, 20171. Let f_{a} be the logistic map family, with parameter $a \in(0,4]$, defined by

$$
f_{a}:[0,1] \rightarrow[0,1] ; f_{a}(x)=a x(1-x)
$$

(a) Fix the parameter $a \in[1,4]$. Let $h:[0,1] \rightarrow[-a / 2, a / 2] ; x \mapsto h(x)=a(x-1 / 2)$. Find the formula for $g_{a}(y)$, where $g_{a}:[-a / 2, a / 2] \rightarrow[-a / 2, a / 2]$ is defined by $g_{a}=$ $h \circ f_{a} \circ h^{-1}$.
(b) Do the same with $h:[0,1] \rightarrow[-1,1] ; x \mapsto h(x)=2 x-1$.
2. Consider the map $g_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g_{\mu}(x)=\mu-x^{2}$. Draw partial bifurcation diagram showing the fixed points and their stability in the $\mu-x$ plane. Comment on the relevance of problem 1(a). In particular, how does the g_{μ} family with μ in the neighborhood of $-1 / 4$ compare with the f_{a} family with a in the neighborhood of 1 ?

In the next two problems, let $t:[0,1] \rightarrow[0,1]$ denote the tent map, defined as

$$
t:[0,1] \rightarrow[0,1] ; t(x)= \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \\ 2-2 x & \text { if } \frac{1}{2} \leq x \leq 1\end{cases}
$$

which, you showed in Homework 3 problem 4, is equivalent to

$$
t\left(\left(0 . b_{0} b_{1} b_{2} \ldots\right)_{2}\right)= \begin{cases}\left(0 . b_{1} b_{2} b_{3} \ldots\right)_{2} & \text { if } b_{0}=0 \\ \left(0 . b_{1}^{*} b_{2}^{*} b_{3}^{*} \ldots\right)_{2} & \text { if } b_{0}=1\end{cases}
$$

where $b_{i} \in\{0,1\}$ are the bits in the base 2 expansion of x, and $b^{*}=1-b$.
3. Let $t:[0,1] \rightarrow[0,1]$ be the tent map, and $f:[0,1] \rightarrow[0,1]$ be defined by $f(x)=2 x(\bmod 1)$. Show that $t \circ t=t \circ f$. This means that t is a semi-conjugacy of f to t.
4. (a) Recall that if h is a semiconjugacy of f to g, then $g^{n}(y)=\left(h \circ f^{n}\right)(x)$, where x satisfies $h(x)=y$. Use the results of the previous problem to show that, for any integer $n \geq 1$,

$$
t^{n}\left(\left(0 . b_{0} b_{1} b_{2} \ldots\right)_{2}\right)= \begin{cases}\left(0 . b_{n} b_{n+1} b_{n+2} b_{n+3} \ldots\right)_{2} & \text { if } b_{n-1}=0 \\ \left(0 . b_{n}^{*} b_{n+1}^{*} b_{n+2}^{*} b_{n+3}^{*} \ldots\right)_{2} & \text { if } b_{n-1}=1\end{cases}
$$

Show that you can use either pre-image of $\left(0 . b_{0} b_{1} b_{2} \ldots\right)_{2}$ under h and get the same result for t^{n}.
(b) Use the formula from part (a) to find the binary expansion of the period-3 points of t. Note now much easier it is with this new result than it was in homework 3, problem 5.

Exercise T3.6, and exercises 3.4, 3.7, 3.9 and 3.10.

