Response of a Driven Damped Linear Oscillator Dr. James W. Swift, NAU

We seek a particular solution $x_{p}: \mathbb{R} \rightarrow \mathbb{R} ; t \mapsto x_{p}(t)$ to the ODE

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}+\frac{1}{Q} \frac{d x}{d t}+x=\cos (\omega t) \tag{1}
\end{equation*}
$$

where $Q>0$ and $\omega>0$ are real parameters. We look for a solution of the form

$$
\begin{equation*}
x_{p}(t)=\operatorname{Re}\left(\hat{A} e^{i \omega t}\right)=R \cos (\omega t-\delta)=A \cos (\omega t)+B \sin (\omega t), \tag{2}
\end{equation*}
$$

where $\hat{A} \in \mathbb{C}$ and $\hat{A}=R e^{-i \delta}=A-i B$, for $R, \delta, A, B \in \mathbb{R}$. The ODE (1) is the real part of

$$
\frac{d^{2}}{d t^{2}}\left[\hat{A} e^{i \omega t}\right]+\frac{1}{Q} \frac{d}{d t}\left[\hat{A} e^{i \omega t}\right]+\hat{A} e^{i \omega t}=e^{i \omega t}
$$

Using the facts that $\frac{d}{d t} e^{i \omega t}=i \omega e^{i \omega t}$ and $\frac{d}{d t} \operatorname{Re}\left(e^{i \omega t}\right)=\operatorname{Re}\left(\frac{d}{d t} e^{i \omega t}\right)$, the previous equation becomes

$$
\hat{A}\left[-\omega^{2}+i \omega / Q+1\right] e^{i \omega t}=e^{i \omega t}
$$

This equation needs to be true for all t, so

$$
\hat{A}=\frac{1}{\left(1-\omega^{2}\right)+i \omega / Q}=\frac{\left(1-\omega^{2}\right)-i \omega / Q}{\left(1-\omega^{2}\right)^{2}+(\omega / Q)^{2}}
$$

The amplitude of \hat{A} is

$$
R=|\hat{A}|=\frac{1}{\sqrt{\left(1-\omega^{2}\right)^{2}+(\omega / Q)^{2}}}=\frac{Q}{\sqrt{Q^{2}\left(1-\omega^{2}\right)^{2}+\omega^{2}}},
$$

so $\hat{A}=R^{2}\left(\left(1-\omega^{2}\right)-i \omega / Q\right)$. Note that $\hat{A}=R e^{-i \delta}=A-i B$ is in the third or fourth quadrant since $B>0$. Consequently, $0<\delta<\pi$. Since $\tan (\pi / 2)$ is undefined it not advisable to define δ in terms of arctangent. We can write δ, A, and B in terms of R :

$$
\delta=\arccos \left(R\left(1-\omega^{2}\right)\right), \quad A=R^{2}\left(1-\omega^{2}\right), \quad B=R^{2} \omega / Q
$$

These can now be used in Equation (2) to find the periodic particular solution to (1). Note that when $\omega=1$, we get $R=Q, \delta=\pi / 2, A=0$, and $B=Q$. Thus, the particular solution is $x_{p}(t)=Q \sin (t)$ when $\omega=1$.

Here are some results about the resonance curve when Q is large. The maximum value of R is approximately Q, and occurs at $\omega \approx 1$. The full width at half maximum power is approximately $1 / Q$. These results are the reason why high Q oscillators are important in many applications.

