
MAT 667 (Dynamical Systems)
Homework # 1 (version 3), Spring 2023

1. Let P (t) be the population of some community at time t. The Logistic Model of
population growth says that

dP

dt
= rP

(
1− P

K

)
(1)

for some constants r > 0 and K > 0. Note that when P/K ≪ 1, the ODE is
approximately dP

dt
≈ rP , and the population grows exponentially like P (t) ≈ P0e

rt

for as long as P (t)/K ≪ 1. For example, if t is measured in years and a small
population grows at 10% per year (compounded continuously) then r = 0.1. One
can actually write down an explicit formula for the solution to this nonlinear ODE
for any initial condition P (0) = P0, but we will not explore this solution since most
nonlinear ODEs cannot be solved in closed form. Instead, we will investigate the
system numerically and consider the value of scaling the problem to decrease the
number of parameters.

(a) Suppose you are modeling the population on a small island with r = 0.1 and
K = 1000 and t measured in years. Use Darryl Nester’s slope field app to investigate
this system for these parameters r = 0.1 and K = 1000. Choose the variables dx

dt
in

the app. Use the “gear” tool to plot 0 ≤ t ≤ 100 and 0 ≤ x ≤ 1200. Note the two
constant solutions, P (t) = 0 and P (t) = 1000.

(b) Investigate the effect of changing the parameters r and K. For example, try
r = 0.05 and r = 0.2. Also change to K = 900 and K = 1100.

(c) (Turn this in.) Do a scaling Equation (1), by scaling the variables P = αP̄ and
t = βt̄. Chose the constants α and β to put the ODE in the form

dP̄

dt̄
= P̄ (1− P̄ ). (2)

Solve for the dimensionless time t̄, and the scaled population P̄ in terms of the
original variables and the original parameters. Write a few sentences to describe the
significance of t̄ and P̄ .

(d) Note that the scaled ODE (2) has no free parameters, so we only need to solve
a single ODE. (We do need to consider different initial conditions.) Go back to the
slope field app, and investigate that scaled ODE.

(e) (Turn this in.) Make a sketch of several solutions to the scaled ODE, or include
the computer-generated figure like I did for Problem 3. Write a caption for the figure,
as if it were a journal article.



All of the rest of the problems describe something to turn in.

2. This Logistic Model is related to the Logistic Map that we have been studying.
One way to approximate the solutions to Equation (2) is Euler’s method. Fix a step
size h > 0. Euler’s method gives an approximation P̄n for the solution to the ODE at
time t̄ = nh. Given the initial condition P̄0, the approximate solution is the sequence
of the iterated map

P̄n+1 = P̄n + h · P̄n(1− P̄n).

Do a scaling P̄n = αxn, and choose α to make xn satisfy the Logistic Map xn+1 =
axn(1 − xn). Find a in terms of h. Show that the fixed point of the logistic map at
any a ∈ (1, 4] scales to P̄ = 1.

3. Use the slope field app again, to investigate Equation (2). But this time use Euler’s
method with outrageously large step sizes, for example h = 2 or 3. Write a caption
for this figure, which shows two approximate solutions to Equation (2), using Euler’s
method with step size h = 2.5. Describe the relation to the Logistic map.

4. The linear second order ODE for a mass on a spring with friction is

m
d2x

dt2
= −kx− γ

dx

dt
(3)

where m > 0 is the mass, k > 0 is the spring constant, and γ > 0 is the friction
constant. Show that, by an appropriate scaling t = αt̄, with α > 0, this becomes

d2x

dt̄2
= −x− c

dx

dt̄
(4)

where c is a dimensionless friction constant. Find c in terms of m, k, and γ.



5. Convert the ODE (4) to a system of 2 first order ODEs and solve with Darryl
Nester’s Slope Field App. Play with various values of the damping parameter c, and
estimate the value of c so that this graph is a solution to the differential equation (3),
with the original t:

t

x

Hints: Note that no scale on the axes is shown, or needed. The important thing is
that after one oscillation the amplitude is decreased by a factor of about 3/5. Thus,
you can answer the question by investigating Equation (4). This graph might show
oscillations in a galaxy where the time axis spans billions of years. Or the graph
might show oscillations in a molecule where the time axis spans nanoseconds.

6. The driven, damped pendulum is a very important dynamical system. It has this
equation of motion F = ma, actually ma = F , for the tangential acceleration:

mℓ
d2θ

dt2
= −mg sin(θ)− γ

dθ

dt
+ F cos(ωdt).

The unit of mass m is kilograms. We write this statement as [m] = kg. Similarly,
[ℓ] = m (meters), [t] = s (seconds). This is the MKS system: (meters, kilograms,
seconds). Angles are special; [θ] = 1 since radians are dimensionless. Figure out the
units of γ, g, F , and ωd so that the units of each term in the ODE are the same.

Do a scaling of time, t = αt̄ and choose α so the equations of motion become

d2θ

dt̄2
= − sin(θ)− c

dθ

dt̄
+ ρ cos(ωt̄).

Find the three essential constants c, ρ and ω in terms of the six original constants
m, ℓ, γ, g, and F , and ωd, and show that all three constants (as well as t̄ and θ) are
dimensionless.

Even with “only” 3 parameters instead of 6, understanding the behavior of solutions
to the driven damped pendulum for all choices of parameters (and initial conditions)
is a seemingly impossible task.


