MAT 667 (Dynamical Systems) Homework \# 2, Spring 2023 version 4

1. Newton's Law of cooling for an object in an oscillating ambient temperature is

$$
\frac{d x}{d t}=-k(x-(A+B \cos (\omega t)) .
$$

See our website for February 17, 20. We found that the scaled form of the ODE is

$$
\frac{d \bar{x}}{d \bar{t}}=-K(\bar{x}-\cos (\bar{t}))
$$

where $\bar{x}=(x-A) / B, \bar{t}=\omega t$, and $K:=k / \omega$. Drop the hats and consider the scaled ODE

$$
\frac{d x}{d t}=-K(x-\cos (t))
$$

The general solution to this ODE is $x(t)=x_{h}(t)+x_{p}(t)$, as discussed in class.
Find the general solution to the scaled equation, using the complex variable technique of $x_{p}(t)=\operatorname{Re}\left(e^{i t}\right)$. Write the solution in both the form $x_{p}(t)=A \cos (t)+B \sin (t)$ and $x_{p}(t)=R \cos (t-\delta)$, getting expressions for A, B, R, and δ in terms of K.
2. Use your results from problem 1 to solve the unscaled IVP

$$
\frac{d x}{d t}=-2(x-(3+4 \cos (5 t)), \quad x(0)=6
$$

3. Recall that the periodic particular solution to $\frac{d x}{d t}+\frac{1}{Q} \frac{d x}{d t}+x=\cos (\omega t)$ is $x_{p}=$ $R \cos (\omega t-\delta)$, where

$$
R=|\hat{A}|=\frac{1}{\sqrt{\left(1-\omega^{2}\right)^{2}+(\omega / Q)^{2}}}=\frac{Q}{\sqrt{Q^{2}\left(1-\omega^{2}\right)^{2}+\omega^{2}}}
$$

Consider $Q>0$ as fixed and find the maximum of R as a function of $\omega \geq 0$. Show that the maximum point of the graph $R=f(\omega)$ is $(0,1)$ for $Q \leq 1 / \sqrt{2}$. For $Q>1 / \sqrt{2}$ find the maximum point $\left(\omega_{*}, R_{*}\right)$, which depends on Q.
4. The periodic particular solution to $\frac{d^{2} x}{d t^{2}}+\frac{1}{Q} \frac{d x}{d t}+x=\omega^{2} \cos (\omega t)$ is $x_{p}=\tilde{R} \cos (\omega t-\delta)$, where

$$
\tilde{R}=\frac{\omega^{2}}{\sqrt{\left(1-\omega^{2}\right)^{2}+(\omega / Q)^{2}}}=\frac{Q \omega^{2}}{\sqrt{Q^{2}\left(1-\omega^{2}\right)^{2}+\omega^{2}}}
$$

and δ is the same as it is for the ODE in problem 3. (This follows since the ODE is linear, and x_{p} in problem 4 is ω^{2} times x_{p} in problem 3.)

Let $R=f(\omega)$ as in problem 3. Show that $\tilde{R}=f(1 / \omega)$. Use this to find the maximum point $\left(\omega_{*}, \tilde{R}_{*}\right)$ of the graph $\tilde{R}=\tilde{f}(\omega)$, assuming $Q>1 / \sqrt{2}$, without taking derivatives.
5. The chaos demonstration made by Doug LaMaster, Jeremy Petak, and Sam Zerbib has a marble rolling on a washboard of the shape $y=-H \cos (\pi x / L)$ shaken back and forth in the x-direction with position $A \cos (\omega t)$. If $x(t)$ is the position of the marble relative to the washboard, Newton's laws of motion are approximately

$$
\frac{7}{5} m \frac{d^{2} x}{d t^{2}}=-\frac{m g H \pi}{L} \sin \left(\frac{\pi x}{L}\right)-m \gamma \frac{d x}{d t}+m A \omega^{2} \cos (\omega t)
$$

(The factor of $\frac{7}{5}$ is due to the rolling (as opposed to sliding) of the marble. The first forcing term is from gravity acting on the slope $\frac{d y}{d x}$ in the small angle approximation assuming $H / L \ll 1$. The frictional term has a force proportional to the velocity; the friction constant γ has units of inverse time. The last term is a "pseudo-force" obtained because the equations are written in the reference frame of the accelerating washboard.)

It is clear that the mass m of the marble cancels in the equation of motion. Show that the time scaling $t=\alpha \bar{t}$, with an appropriately chosen α, gives the driven, damped pendulum equation for the variable $\theta=\pi x / L$:

$$
\frac{d^{2} \theta}{d \bar{t}^{2}}=-\sin (\theta)-c \frac{d \theta}{d \bar{t}}+\bar{A} \bar{\omega}^{2} \cos (\bar{\omega} \bar{t})
$$

Find the dimensionless parameters c, \bar{A}, and $\bar{\omega}$ in terms of the dimensional parameters H, L, A, γ, ω, and g.

Note: This question is very similar to problem 6 in homework 1.
6. The constant c is the hard one to determine in the driven damped pendulum equation as applied to the shaken washboard. We can estimate c by looking at the approach of the marble to the bottom of the well when the washboard is stationary ($A=0$, or $\omega=0$). Estimate the dimensionless constant c for the green marble and the yellow ball in the videos posted on the web.

Notes:
(1) This is very open ended. I am looking for your estimate to be within a factor of 2 of my estimate. You may use numerical solutions from the Slope Field and Direction Field Applet, or analytical solutions to the small amplitude $(\sin (x) \approx x)$ ODE.
(2) This question is very similar to question 5 in homework 1.
7. The following figure is from the standard map interactive app on our web site. The unstable period 5 solution at the corners of the closed curve is the "k $=\mathrm{pi} / 2$, period 6 " solution we discussed in class, with the animation on our web site. The stable period 6 solution shown has $k=1.5708(\pi / 2)$, and initial condition $x=4.9697, p=0.7563$, in the notation of the website. The website's x is what I called θ_{R} (Russian) in class. Translate the website's notation to the θ, ω notation used in the standardMap.nb mathematica notebook. Use the notebook to make an animated gif for this stable period 6 solution.

8. Explore the same interactive app for the standard map used in problem 7. Find another periodic solution that looks interesting and make an animated gif for that periodic solution.

