The Period Doubling Operator Jim Swift at NAU

The doubling operator \mathcal{T} maps a function f to a new function $\mathcal{T}f$, which can also be denoted $\mathcal{T}(f)$. In my slightly unorthodox definition, the domain \mathcal{D} of \mathcal{T} is the infinite-dimensional space of differentiable functions $f: [-1, 1] \to [-1, 1]$ such that

- f(-1) = f(1) = -1.
- f has a unique critical point c, and f''(c) < 0.
- f has exactly 2 fixed points, -1 and $x^* > c$.

Note that $f \in \mathcal{D}$ is increasing on [-1, c] and decreasing on [c, 1], and f(c) > c. There is a unique $x_{\ell} < c$ such that $f(x_{\ell}) = x^*$. Define the function $h : [x_{\ell}, x^*] \to [-1, 1]$ as the unique linear function that satisfies $h(x^*) = -1$ and $h(x_{\ell}) = 1$. One formula is $h(x) = -1 + 2\frac{x^* - x}{x^* - x_{\ell}}$. (Note that h has a negative slope.)

The doubled function $\mathcal{T}f: [-1,1] \to \mathbb{R}$ is defined by $\mathcal{T}f = h \circ f^2 \circ h^{-1}$.

An important special case is when f is even. In this case c = 0 and $x_{\ell} = -x^*$, so $h(x) = -\frac{x}{x^*}$ and $h^{-1}(x) = -xx^*$. Therefore, $\mathcal{T}f(x) = -\frac{1}{x^*}f^2(xx^*)$. It is traditional in this case to define $\alpha = 1/x^*$, so

if $f \in \mathcal{D}$ is even, and $f(1/\alpha) = 1/\alpha > 0$, then $\mathcal{T}f(x) = -\alpha f^2(x/\alpha)$.

The Feigenbaum conjectures, proved by Oscar Lanford III with computer help, are

- \mathcal{T} has a unique fixed point in \mathcal{D} , which is even, denoted by g.
- The linearization of \mathcal{T} at g, $D\mathcal{T}(g)$, has exactly one eigenvalue outside the unit circle. This eigenvalue is $\delta \approx 4.669$. Furthermore, there are no eigenvalues on the unit circle.

This explains why the *Feigenbaum constant* $\delta \approx 4.669$ is a "universal number". There is another universal number $\alpha \approx 2.503$ defined as the reciprocal of the unique fixed point of g in [0, 1]. The "universal function" g satisfies $g(x) = -\alpha g^2(x/\alpha)$.

It should be mentiond that another paper independently discovered this universality: Coullet, P; Tresser, C (1978), "Iteration d'endomorphismes et groupe de renormalisation", J. Phys. Colloque, 539: 525. Predrag Cvitanović also deserves mention.

Application to the logistic map family $f_a(x) = -1 + \frac{a}{2}(1-x^2)$, with $0 \le a \le 4$: The logistic map f_a is in the domain of \mathcal{T} iff $2 < a \le 4$.

The doubled map $\mathcal{T} f_a$ is itself in the domain of \mathcal{T} iff $a_2 < a \leq M$, where $a_2 = 1 + \sqrt{5}$, so that f_{a_2} has a superstable period 2 orbit, and $M \approx 3.67857$ is the first Misiurewicz point, where f_M has the 2 to 1 band merging.

The only map in the family f_a such that $\mathcal{T}^n f_a \in \mathcal{D}$ for all n is the one with $a = a_{\infty}$, at the accumulation of period doublings. Furthermore,

$$\lim_{n \to \infty} \mathcal{T}^n f_{a_\infty} = g,$$

the universal function.