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Newton’s Method and Symmetry for Semilinear Elliptic PDE on the Cube∗

John M. Neuberger†, Nándor Sieben†, and James W. Swift†

Abstract. We seek discrete approximations to solutions u : Ω → R of semilinear elliptic PDE of the form
Δu + fs(u) = 0, where fs is a one-parameter family of nonlinear functions and Ω is a domain in
R

d. The main achievement of this paper is the approximation of solutions to the PDE on the cube
Ω = (0, π)3 ⊆ R

3. There are 323 possible isotropy subgroups of functions on the cube, which fall into
99 conjugacy classes. The bifurcations with symmetry in this problem are quite interesting, including
many with 3-dimensional critical eigenspaces. Our automated symmetry analysis is necessary with so
many isotropy subgroups and bifurcations among them, and it allows our code to follow one branch
in each equivalence class that is created at a bifurcation point. Our most complicated result is the
complete analysis of a degenerate bifurcation with a 6-dimensional critical eigenspace. This article
extends our work in [Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), pp. 2531–2556], wherein
we combined symmetry analysis with modified implementations of the gradient Newton–Galerkin
algorithm (GNGA [J. M. Neuberger and J. W. Swift, Internat. J. Bifur. Chaos Appl. Sci. Engrg.,
11 (2001), pp. 801–820]) to automatically generate bifurcation diagrams and solution graphics for
small, discrete problems with large symmetry groups. The code described in the current paper is
efficiently implemented in parallel, allowing us to investigate a relatively fine-mesh discretization of
the cube. We use the methodology and corresponding library presented in our previous paper [Int.
J. Parallel Program., 40 (2012), pp. 443–464].
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1. Introduction. We are interested in finding and approximating solutions u : Ω → R of
semilinear elliptic equations with zero Dirichlet boundary conditions,{

Δu+ fs(u) = 0 in Ω,
u = 0 on ∂Ω,

(1)

where fs : R → R satisfies fs(0) = 0, f ′s(0) = s, and Ω is a region in R
2 or R

3. Our code
also works for zero Neumann boundary conditions and a wide range of nonlinearities. In this
paper we present results for PDE (1) with fs(t) = st+ t3 on the square Ω = (0, π)2 and, more
challengingly, on the cube Ω = (0, π)3. By finding and following new, bifurcating branches
of (generally) lesser symmetry, we are able to approximate, within reason, any solution that
is connected by branches to the trivial branch. The more complicated solutions bifurcating
farther from the origin (u, s) = (0, 0) are, of course, progressively more challenging to locate
and accurately approximate.
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Generally, we apply Newton’s method to the gradient of an action functional whose critical
points are solutions to our PDE. For an exposition of our initial development of the gradient
Newton–Galerkin algorithm (GNGA) and our first application of it to the square, see [19].

This article extends the methods for so-called partial difference equations (PdE) from [16]
to large graphs, that is, fine-mesh discretizations for PDE. For small graphs with possibly
large symmetry groups, the code in [16] automated the analysis of symmetry, isotypic decom-
position, and bifurcation. We use here the GAP (Groups, Algorithms, and Programming; see
[10]) and Mathematica codes presented in those articles to automatically generate a wealth of
symmetry information for use by our branch-following C++ code. Some of this information is
summarized in the bifurcation digraph, which shows the generic symmetry breaking bifurca-
tions. In [16] we developed two modified implementations of the GNGA, namely the tangent
algorithm (tGNGA), for following bifurcation curves, and the cylinder algorithm (cGNGA),
for switching branches at bifurcation points. Together with a secant method for locating these
bifurcation points, in the current PDE setting we are able to handle most difficulties that arise
when encountering accidental degeneracies and high-dimensional critical eigenspaces.

Since we use a fine mesh to investigate PDE (1) on the cube Ω = (0, π)3, the practical
implementation of the algorithms from [16] requires increased efficiencies. In particular, we
use isotypic decompositions of invariant fixed-point spaces to take advantage of the block
diagonal structure of the Hessian matrix. In doing so, we substantially reduce the dimension
of the Newton search direction linear system and hence also reduce the number of costly
numerical integrations. The same theory allows for reduced dimensions in many of the search
spaces when seeking new, bifurcating solutions near high-dimensional bifurcation points in
the presence of symmetry.

Even with these efficiency improvements, we found it necessary to convert our high-level
branch-following strategy to use parallel computing. Most of the details of the parallel imple-
mentation can be found in [18], where we present a general methodology using self-submitting
job queues to implement many types of mathematical algorithms in parallel. In particular,
therein we develop a lightweight, easy-to-use C++ parallel job queue library, which we have
used in obtaining the cube results found in this article.

Our numerical results are summarized in bifurcation diagrams, which plot a scalar function
such as the value of u at a generic point u(x∗, y∗, z∗) versus s, for approximate solutions to (1)
with parameter s. These diagrams indicate by line type the Morse index (MI) of solutions,
which typically changes at bifurcation and turning points. The MI of a nondegenerate critical
point is defined as the number of negative eigenvalues of the Hessian. We present graphics
for individual approximate solutions in several formats. For the most part, we find that
representative graphics using a small, fixed collection of patches (“flags”) most clearly show
the symmetries of real-valued functions of three variables. We call these flag diagrams. We
also include some contour plots of actual solution approximations. A fairly comprehensive
collection of graphics and supporting information describing the symmetries of functions on
the cube, possible bifurcations of nonlinear PDE on the cube, and more example approximate
PDE solutions can be found on the companion website [17].

In [16], we considered many small graphs where scaling was not used and hence PDE were
not involved. In the present setting, we approximate a solution u to PDE (1) with a vector
u = (un) ∈ R

N whose components represent u values at N regularly spaced grid points in Ω
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located a distance Δx apart. Thus, our approach is equivalent to applying our algorithms to
the finite-dimensional semilinear elliptic PdE

(2) −Lu+ fs(u) = 0 in ΩN ,

where ΩN is a graph with N vertices coming from a grid. The matrix L is in fact the graph
Laplacian on ΩN , scaled by 1

(Δx)2 and modified at boundary vertices to enforce a zero-Dirichlet

problem boundary condition. All of our calculations are done using the 1-dimensional vector
u; we reshape to a 2- or 3-dimensional array only for producing contour plots of solutions.
See [14] for a discussion of ghost points for enforcing boundary conditions. For general regions
in R

2 and R
3, we approximate eigenvectors of L using standard linear techniques, e.g., eigs

for MATLAB or some other easy-to-use implementation of ARPACK. For the square and
cube the eigenfunctions are, of course, well known explicitly in terms of sine functions, so the
consideration of L is not necessary. Since accurate PDE results require the dimension N to be
very large, in the expansions of our approximate solutions u =

∑M
m=1 amψm we use M � N

discretized eigenfunctions of −Δ with this boundary condition.
In section 2 we present some theory for the action functional, its gradient and Hessian,

symmetry of functions, the corresponding fixed-point subspaces, and bifurcations with sym-
metry. We apply the general symmetry theory to the basis-generation process for the square
and cube. In section 3 we outline the algorithms used in our project. We include a high-level
description of our numerical methods and corresponding implementations, including the new
use of self-submitting parallel job queues applied to obtain accurate high-resolution solutions
for the cube. We also describe our method for taking advantage of the block structure of the
Hessian and our procedure for generating contour plots of approximate solutions. Section 4
contains the results from our experiment on the square, essentially an efficient and automatic
refinement of the computations found in [19].

Our main numerical results are found in section 5. Namely, we investigate PDE (1) on
the cube, which requires that we use a large number of eigenmodes and spatial grid points
in order to find nodally complicated solutions of high MI, lying in many different fixed-point
spaces of the fairly large symmetry group. We present several interesting examples from the
companion website. The website shows examples of a solution with each of the symmetry
types that we found in our investigation; due to space limitations, we do not show all of
these solutions in this paper. Rather, we concentrate on the first six primary bifurcations and
one of the secondary bifurcations with Td symmetry (the symmetry of a tetrahedron). Two
of the primary bifurcations that we consider have degenerate bifurcation points, including
one with a 6-dimensional eigenspace that is the direct sum of two 3-dimensional irreducible
representations of Oh, the symmetry of the cube.

There does not seem to be much in the literature that specifically investigates the bifurca-
tion and symmetry of solutions to semilinear elliptic PDE on the cube. The related problem
of bifurcation on a cubic lattice was considered in [4], which describes the interesting and
complicated local bifurcations in PDE (1) with periodic boundary conditions. The article [3]
is interesting for pushing the nonlinearity power to the critical exponent in the cube case.

The interested reader can consult works by Zhou and coauthors for alternate but related
methods and algorithms for computing solutions to semilinear elliptic PDE, e.g., [25, 26, 27]
and the recent book [6].
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2. Symmetry and invariance. For the convenience of the reader, in this section we sum-
marize enough notation and theory from [16] to give our new results context. We also include
square- and cube-specific information required to apply our algorithms in our particular cases.

2.1. The functional setting. Our techniques rely on two levels of approximation, namely
the restriction of functions to a suitably large M -dimensional Galerkin subspace BM ⊆ H =
H1

0 (Ω) and the discretization of Ω to ΩN . We call the natural numbersM and N the Galerkin
and spatial dimensions, respectively, of our approximations. For the regions Ω considered in
this paper, it suffices to divide the region up into N squares or cubes with edge length Δx
and then place a grid point xn in the center of each such cell. The graph ΩN has a vertex vi
corresponding to each grid point, with edges enj determined by the several neighbors xj which
are at distance Δx away from xn. With this arrangement, the simple numerical integration
scheme used below in (6) and (8) to evaluate the nonlinear terms in our gradient and Hessian
computations becomes the midpoint method.

The eigenvalues of the negative Laplacian with the zero Dirichlet boundary condition
satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,(3)

and the corresponding eigenfunctions {ψm}m∈N can be chosen to be an orthogonal basis for
the Sobolev space H and an orthonormal basis for the larger Hilbert space L2 = L2(Ω), with
the usual inner products. In the cases Ω = (0, π)d for d = 2 and d = 3, we take the first M
eigenvalues (counting multiplicity) from

{λi,j := i2 + j2 | i, j ∈ N} or {λi,j,k := i2 + j2 + k2 | i, j, k ∈ N}
and singly index them in a vector λ = (λ1, . . . , λM ). In these cases, the corresponding eigen-
functions ψm that we use are appropriate linear combinations of the well-known eigenfunctions

ψi,j(x, y) =
2
π sin(ix) sin(jy) and ψi,j,k(x, y, z) =

(
2
π

)3/2
sin(ix) sin(jy) sin(kz). We process the

eigenfunctions using the projections given in section 2.3 in order to understand and exploit the
symmetry of functions in terms of the nonzero coefficients of their eigenfunction expansions.
The ψm are discretized as ψm ∈ R

N , m ∈ {1, . . . ,M}, by evaluating the functions at the grid
points; i.e., ψm = (ψm(x1), . . . , ψm(xN )). The eigenvectors ψm form an orthonormal basis
for an M -dimensional subspace of RN .

Using variational theory, we define a nonlinear functional J whose critical points are the
solutions of PDE (1). We use the GNGA [19] to approximate these critical points; that is, we
seek approximate solutions u lying in the subspace

BM := span{ψ1, . . . , ψM} ⊆ H,
which in turn are discretely approximated in R

N by

u =
M∑

m=1

amψm.

The coefficient vectors a in R
M (simultaneously the approximation vectors u in R

N ) are
computed by applying Newton’s method to the eigenvector expansion coefficients of the ap-
proximation −L+ fs(u) of the gradient ∇Js(u).
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Let Fs(p) =
∫ p
0 fs(t) dt for all p ∈ R define the primitive of fs. We then define the action

functional Js : H → R by

(4) Js(u) =

∫
Ω

1
2 |∇u|2 − Fs(u) dV =

M∑
m=1

1
2a

2
mλm −

∫
Ω
Fs(u) dV .

The class of nonlinearities fs found in [1, 5] implies that Js is well defined and of class C2 on
H. Computing directional derivatives and integrating by parts gives

(5) J ′
s(u)(ψm) =

∫
Ω
∇u · ∇ψm − fs(u)ψm dV = amλm −

∫
Ω
fs(u)ψm dV

for m ∈ {1, . . . ,M}. Replacing the nonlinear integral term with a sum that is in fact the
midpoint method given our specific (square or cube) grid gives the gradient coefficient vector
g ∈ R

M defined by

(6) gm = amλm −
N∑

n=1

fs(un)(ψm)nΔV.

Here, the constant mesh area or volume factor is given by ΔV = Vol(Ω)/N = πd/N . The func-
tions PBM

∇Js(u) and
∑M

m=1 gmψm are approximately equal and are pointwise approximated
by the vector −Lu+ fs(u).

To apply Newton’s method to find a zero of g as a function of a, we compute the coefficient
matrix h for the Hessian as well. A calculation shows that

(7) J ′′
s (u)(ψl, ψm) =

∫
Ω
∇ψl · ∇ψm − f ′s(u)ψl ψm dV = λlδlm −

∫
Ω
f ′s(u)ψl ψm dV ,

where δlm is the Kronecker delta function. Again using numerical integration, for l,m ∈
{1, . . . ,M} we compute elements of h by

(8) hlm = λlδlm −
N∑

n=1

fs(un)(ψl)n(ψm)nΔV.

The coefficient vector g ∈ R
M and the M × M coefficient matrix h represent suitable

projections of the L2 gradient and Hessian of Js, restricted to the subspace BM , where all such
quantities are defined. The least squares solution χ to theM -dimensional linear system hχ = g
always exists and is identified with the projection of the search direction (D2

2Js(u))
−1∇2Js(u)

onto BM . The L2 search direction not only is defined for all points u ∈ BM such that the
Hessian is invertible, but also is in that case equal to (D2

HJs(u))
−1∇HJs(u).

The Hessian function hs : R
M → R

M or h : RM+1 → R
M is very important for identifying

bifurcation points. If h(a∗, s∗) is invertible at a solution (a∗, s∗), then the implicit function
theorem guarantees that there is locally a unique solution branch through (a∗, s∗). When
h(a∗, s∗) is not invertible, then (a∗, s∗) is a candidate for a bifurcation point, defined in the
next subsection. The kernel

Ẽ = Nullh(a∗, s∗)
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of the Hessian at a bifurcation point is called the critical eigenspace. A Lyapunov–Schmidt re-
duction of the gradient g(a∗, s∗) can be done to obtain the Lyapunov–Schmidt reduced gradient
g̃ : Ẽ → Ẽ [11]. Local to the point where h is singular, there is a one-to-one correspondence
between zeros of g and zeros of g̃. The Lyapunov–Schmidt reduced bifurcation equations are
g̃ = 0. We refer to the reduced gradient or reduced bifurcation equations when the Lyapunov–
Schmidt reduction is understood.

Newton’s method in coefficient space is implemented by fixing s, initializing the coefficient
vector a with a guess, and iterating

(9) a← a− χ, where h(a, s)χ = g(a, s).

When it converges, the algorithm converges to vectors a and u =
∑M

m=1 amψm giving g = 0,
and hence an approximate solution to PDE (1) has been found. The search direction χ
in Newton’s method is found by solving the system in (9) without inverting h(a, s). The
solver we use returns the least squares solution for an overdetermined system and the solution
with smallest norm for an underdetermined system. We observe experimentally that Newton
algorithms work well even near bifurcation points where the Hessian is not invertible. In
section 3 we include brief descriptions of the tGNGA and cGNGA, the modifications of the
GNGA actually implemented in our current code.

In sections 2.3 and 2.4 we explain the details of our method for constructing a specific
basis of eigenfunctions that allows our code to exploit and report symmetry information.
Regardless of whether we know a basis for BM in terms of sines or must approximate one
using numerically computed eigenvectors of the sparse matrix L, we are required to first
compute various symmetry quantities relevant to the region Ω and the possible symmetry
types of expected solutions. For this we use GAP [10]. A similar calculation was done in
[13]. We start with a graph G which has the same symmetry as ΩN but with a significantly
smaller number of vertices. In Figure 1 we show a 12-vertex graph with the D4 symmetry
of the square, and a 48-vertex graph with the Oh symmetry of the cube. These graphs are
the smallest we found that allow functions on the vertices to have all possible symmetry
types. For example, the square with four vertices does not allow a function with only 4-fold
rotational symmetry. The group information used to analyze the symmetry of all functions
on the square and cube regions was determined automatically by our suite of programs. The
automated GAP processes adapted from [16] would fail if fed instead the exceedingly large
graphs ΩN . Our GAP code is applied to the smaller graph G to generate all the files encoding
the bifurcation digraph and the underlying fixed-point space decompositions. The results from
the small-graph analysis inform us and our code about the symmetries of functions on Ω and
the vectors in R

N which approximate such functions at the grid points.

2.2. Symmetry of functions. We assume that fs is odd; the case where fs is not odd
is easily inferred. To discuss the symmetry of solutions to (1), we note that Aut(Ω) × Z2

∼=
Aut(ΩN )× Z2

∼= Aut(G) × Z2, where G is one of the small graphs depicted in Figure 1. We
define

Γ0 = Aut(ΩN )× Z2,

where Z2 = {1,−1} is written multiplicatively.
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Figure 1. Small graphs used to generate symmetry information for analyzing functions on the square and
cube, respectively. The graph on the right, with full octahedral symmetry, is the skeleton graph of the great
rhombicuboctahedron, which has 48 vertices, 72 edges, and 26 faces. This solid can be inscribed in the cube,
with eight vertices in each of the six faces. Thus, there is a one-to-one correspondence between elements of
Oh and vertices of the skeleton graph, after one vertex (chosen arbitrarily) has been assigned to the identity
element.

The natural action of Γ0 on R
N is defined by

(10) (γ · u)i = βuπ−1(i),

where γ = (απ, β) ∈ Γ0 and u ∈ R
N . We usually write α for (α, 1) and −α for (α,−1). The

symmetry of u is the isotropy subgroup Sym(u) := Stab(u,Γ0) = {γ ∈ Γ0 | γ · u = u}. The
symmetries Sym(u) of functions u : Ω→ R are isomorphic to Sym(u). Two subgroups Γi and
Γj of Γ0 are called conjugate if Γi = γΓjγ

−1 for some γ ∈ Γ0. The symmetry type of u is the
conjugacy class [Sym(u)] of the symmetry of u; a similar definition holds for the symmetry
type of a function u : Ω → R. We say that two symmetry types are isomorphic if they have
isomorphic representatives. We use the notation G := {Γ0, . . . ,Γq} for the set of symmetries
and S := {S0 = [Γ0], . . . , Sr} for the set of symmetry types.

Let X be the set of all solutions (u, s) to (2) in R
N×R. We define a branch of solutions to

be a maximal subset of X that is a C1 manifold with constant symmetry. The trivial branch
{(0, s) | s ∈ R} contains the trivial solution u = 0, which has symmetry Γ0 if fs is odd, and
symmetry Aut(G) otherwise. A bifurcation point is a solution in the closure of at least two
different solution branches. We call the branch containing the bifurcation point the mother,
and the other branches, for which the bifurcation point is a limit point, are called daughters.
Note that there is not a bifurcation at a fold point, where a branch of constant symmetry is
not monotonic in s.

The action of Γ0 on R
N induces an action of Γ0 on R

M , given the correspondence of
functions and coefficient vectors u =

∑M
m=1 ψm. The gradient function gs : RM → R

M is
Γ0-equivariant; i.e., gs(γ · a) = γ · gs(a) for all γ ∈ Γ0, a ∈ R

M , and s ∈ R. As a consequence,
if (a, s) is a solution to (2), then (γ · a, s) is also a solution to (2) for all γ ∈ Γ0. Following
the standard treatment [11, 16], for each Γi ≤ Γ0 we define the fixed-point subspace of the Γ0
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action on R
M to be

Fix(Γi,R
M ) = {a ∈ R

M | γ · a = a for all γ ∈ Γi}.

The fixed-point subspaces for any of the function spaces V = BM , Rn, Ẽ, or H are defined as

Fix(Γi, V ) = {u ∈ V | γ · u = u for all γ ∈ Γi}.

There is a one-to-one correspondence between a ∈ R
M and u ∈ BM , and we will often write

Fix(Γi) when the equation is valid for any ambient space. These fixed-point subspaces are
important because they are gs-invariant, meaning that gs(Fix(Γi)) ⊆ Fix(Γi). For efficiency
in our code, we restrict gs to one of these fixed-point subspaces, as described in subsection 3.2.

As mentioned in the previous subsection, the reduced bifurcation equations are g̃ = 0,
where g̃ : Ẽ → Ẽ is the reduced gradient on the critical eigenspace Ẽ. A fold point (a∗, s∗) is
not a bifurcation point even though h(a∗, s∗) is singular.

Consider a bifurcation point (a∗, s∗) in coefficient space, or the corresponding (u∗, s∗), and
let Γi = Sym(u∗) be the symmetry of the mother solution. Then there is a natural action of
Γi on Ẽ, and the reduced gradient g̃ is equivariant. That is, g̃(γ ·e, s) = γ · g̃(e, s) for all γ ∈ Γi

and e ∈ Ẽ. Let Γ′
i be the kernel of the action of Γi on Ẽ. Then Γi/Γ

′
i acts freely on Ẽ, and we

say that the mother branch undergoes a bifurcation with Γi/Γ
′
i symmetry. This bifurcation is

generic, or nondegenerate, if the action of Γi/Γ
′
i on Ẽ is irreducible and other nondegeneracy

conditions (see [11]) are met. For each Γj ≤ Γi, if e ∈ Fix(Γj , Ẽ), then Sym(u∗ + e) = Γj.
Most of the fixed-point subspaces in Ẽ are empty. The subgroups {Γj | Fix(Γj , Ẽ) �= ∅}
can be arranged in a lattice of isotropy subgroups. The equivariant branching lemma (EBL),
described in [11], states that there is generically an EBL branch of bifurcating solutions with
symmetry Γj if the fixed-point subspace Fix(Γj , Ẽ) is 1-dimensional. In a gradient system
such as PDE (1), there is generically a branch of bifurcating solutions with symmetry Γi if Γi

is a maximal isotropy subgroup. See [11, 16] for details.
The bifurcation digraph, defined in [16], summarizes some information about all of the

generic bifurcations that are possible for a system with a given symmetry. In particular, if
there is a daughter with symmetry Γj created at a generic bifurcation of a mother solution
with symmetry Γi in a gradient system, then there is an arrow in the bifurcation digraph

[Γi]
Γi/Γ′

i �� [Γj].

The arrow in the bifurcation digraph is either solid, dashed, or dotted, as described in [16].
Roughly speaking, a solid arrow indicates a pitchfork bifurcation within some 1-dimensional
subspace of Ẽ, a dashed arrow indicates a transcritical bifurcation within some 1-dimensional
subspace of Ẽ, and a dotted arrow indicates a more exotic bifurcation.

In [16] we defined an anomalous invariant subspace (AIS) A ⊆ V , with V = BM or H, to
be a gs-invariant subspace that is not a fixed-point subspace. Consider the PDE (1) on the
cube, with fs odd. For positive integers p, q, and r, not all 1, the set

(11) Ap,q,r = span
{
ψi,j,k | i

p ,
j
q ,

k
r ∈ Z

}
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is an AIS. The function space A1,1,1 is all of V , so it is not an AIS.
The space Ap,q,r is the appropriate function space if one solved the PDE (1) in the box

(0, π/p)× (0, π/q)× (0, π/r). Any solution in this box extends to a solution on the cube, with
nodal planes dividing the cube into pqr boxes. These AIS are caused by the so-called hidden
symmetry [7, 12, 19] of the problem that is related to the symmetry of the PDE on all of R3,
with periodic boundary conditions.

There are in fact a multitude of AIS for the PDE on the cube. There are proper subspaces
of every AIS Ap,q,r consisting of functions with symmetry on the domain (0, π/p)× (0, π/q)×
(0, π/r). For example, consider the case where p = q = r > 1. Since there are 323 fixed-point
subspaces for functions on the cube, including the 0-dimensional {0}, there are 322 AIS that
are subspaces of Ap,p,p for each p > 1.

Our code effectively treats bifurcations breaking hidden symmetries as degenerate, and
successfully follows branches in any AIS, within reason. A starting point for a more complete
understanding of the AIS-breaking bifurcations in our problem would be the extension of
the 2-dimensional theory of [7] to the hidden symmetries induced by the periodic boundary
conditions in R

3 using the local theory of [4]. The general theory of anomalous solutions
within AIS is unknown. The book [9] is a good reference on invariant spaces of nonlinear
operators.

2.3. Isotypic decomposition. To analyze the bifurcations of a branch of solutions with
symmetry Γi, we need to understand the isotypic decomposition of the action of Γi on R

n.
Suppose that a finite group Γ acts on V = R

n according to the representation g → αg :
Γ → Aut(V ) ∼= GLn(R). In our applications we choose Γ ∈ G, and the group action is that

in (10). Let {α(k)
Γ : Γ→ GL

d
(k)
Γ

(R) | k ∈ KΓ} be the set of irreducible representations of Γ over

R, where dΓ(k) is the dimension of the representation. We write α(k) and K when the subscript
Γ is understood. It is a standard result of representation theory that there is an orthonormal

basis BΓ =
⋃

k∈K B
(k)
Γ for V such that B

(k)
Γ =

⋃· Lk
l=1B

(k,l)
Γ and [αg|V (k,l)

Γ

]
B

(k,l)
Γ

= α(k)(g) for all

g ∈ Γ, where V
(k,l)
Γ := span(B

(k,l)
Γ ). Each V

(k,l)
Γ is an irreducible subspace of V . Note that

B
(k)
Γ might be empty for some k, corresponding to V

(k)
Γ = {0}. The isotypic decomposition of

V under the action of Γ is

(12) V =
⊕
k∈K

V
(k)
Γ ,

where V
(k)
Γ =

⊕Lk
l=1 V

(k,l)
Γ are the isotypic components.

The isotypic decomposition of V under the action of each Γi is required by our algorithm.
The decomposition under the action of Aut(G) is the same as the decomposition under the
action of Γ0. While there are twice as many irreducible representations of Γ0 = Aut(G)× Z2

as there are of Aut(G), if α
(k)
Γ0

(−1) = I, then V
(k)
Γ0

= {0}. The other half of the irreducible

representations have α
(k)
Γ0

(−1) = −I. The irreducible representations of Γ0 and of Aut(G) can

be labeled so that V
(k)
Γ0

= V
(k)
Aut(G) for k ∈ KAut(G).

The isotypic components are uniquely determined, but the decomposition into irreducible

spaces is not. Our goal is to find B
(k)
Γ for all k by finding the projection P

(k)
Γ : V → V

(k)
Γ .
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To do this, we first need to introduce representations over the complex numbers C for two
reasons. First, irreducible representations over C are better understood than those over R.
Second, our GAP program uses the field C since irreducible representations over R are not
readily obtainable by GAP.

There is a natural action of Γ on W := C
n given by the representation g → βg : Γ →

Aut(W ) such that βg and αg have the same matrix representation. The isotypic decomposition

W =
⊕

k∈K̃ W
(k)
Γ is defined as above using the set {β(k) : Γ → GL

d̃
(k)
Γ

(C) | k ∈ K̃Γ} of

irreducible representations of Γ over C.
The characters of the irreducible representation β(k) are χ(k)(g) := Trβ(k)(g). The pro-

jection Q
(k)
Γ :W →W

(k)
Γ is known to be

(13) Q
(k)
Γ =

d̃
(k)
Γ

|Γ|
∑
g∈Γ

χ(k)(g)βg.

We are going to get the P
(k)
Γ ’s in terms of the Q

(k)
Γ ’s. A general theory for constructing these

projections can be found in [16], but here it is enough that if χ(k) = χ(k), then P
(k)
Γ = Q

(k)
Γ |V

and d
(k)
Γ = d̃

(k)
Γ , whereas if χ(k) �= χ(k), then P

(k)
Γ =

(
Q

(k)
Γ +Q

(k)
Γ

) |V and d
(k)
Γ = 2d̃

(k)
Γ for all

k ∈ KΓ.

2.4. Basis processing. In this subsection, we describe how the package of programs from
[16] is modified to generate the basis needed to approximate solutions to PDE (1) on the square
or cube. In principle a brute force method is possible, wherein the very large graph ΩN is
used. However, the GAP and Mathematica portions of the package in [16] cannot process
such large graphs with current computer systems. To remedy this, we wrote specialized
Mathematica basis-generation programs for the square and cube. These programs use the
known eigenfunctions, ψi,j or ψi,j,k, together with the GAP output from the graphs in Figure 1
to generate the data needed by the GNGA program.

It can be shown that for polynomial fs and the known eigenfunctions ψm defined in terms
of sine functions on the square and cube, the midpoint numerical integration can be made
exact, up to the arithmetic precision used in the computation. In particular, consider the case
when fs is cubic and the eigenfunctions are ψi,j (for d = 2) or ψi,j,k (for d = 3). Let M̃ be the
desired number of sine frequencies in each dimension, that is, i, j, k ≤ M̃ . Then our midpoint
numerical integration is exact if 2M̃ + 1 grid points in each direction are used, giving a total
of N = (2M̃ + 1)d total grid points. For example, for analyzing PDE (1) on Ω = (0, π)2

we used M̃ = 30 sine frequencies and, for exact integration, N = (2 · 30 + 1)2 = 3721
grid points. Similarly, for the cube Ω = (0, π)3, we used M̃ = 15 sine frequencies and
N = (2 · 15 + 1)3 = 29, 791 grid points.

The only input for the basis-generation program is M̃ , the desired number of sine frequen-
cies in each dimension. We define the bases

BM = {ψi,j | 1 ≤ i, j ≤ M̃ and λi,j = i2 + j2 < (M̃ + 1)2 + 1}
for the square, and

BM = {ψi,j,k | 1 ≤ i, j, k ≤ M̃ and λi,j,k = i2 + j2 + k2 < (M̃ + 1)2 + 2}
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for the cube. These bases include all eigenfunctions with eigenvalues less than λM̃+1,1 and

λM̃+1,1,1, respectively. This process gives M = 719 for the square, not M̃2 = 900, and

M = 1848 for the cube, as opposed to M̃3 = 3375.
The basis-generation code also produces an automorphism file, which is an 8×N (for the

square) or 48 × N (for the cube) matrix describing how the elements of D4 or Oh permute
the vertices in ΩN . This file is used by the GNGA program but not by the square and cube
basis-generation code. Instead, the action of D4 or Oh on the eigenfunctions is achieved very
efficiently using the standard 2-dimensional representation of D4 acting on the plane and the
standard 3-dimensional representation of Oh acting on R

3. This requires us to define ψi,j and
ψi,j,k for negative integers i, j, k in this way: ψ−i,j(x, y) = ψi,j(π − x, y) and ψ−i,j,k(x, y, z) =
ψi,j,k(π − x, y, z).

The GNGA program does not use the basis BM . Rather, it uses a basis spanning the same
M -dimensional space, obtained from projections of the eigenfunctions in BM onto the isotypic
components identified by the GAP program. The output of the GAP program for the small
graphs shown in Figure 1 is used to achieve these projections. For the cube, the eigenspaces
of the Laplacian for the eigenvalue λi,j,k are 1-dimensional if i = j = k, 3-dimensional if
i = j < k or i < j = k, and 6-dimensional if i < j < k. Each of these eigenspaces
are separated into their isotypic components automatically by the basis-generation programs,
using the characters found by GAP for the graphs in Figure 1. Then the projections in (13) are
written as 2×2 or 3×3 matrices, where βg is the standard 2- or 3-dimensional representation
of D4 or Oh, respectively. With these changes, the construction of the bases proceeds as
described in [16].

2.5. The symmetry of a cube. In this section we describe the various matrix groups
related to the symmetry of a cube. We start with the symmetry group of the cube (−1, 1)3.
The matrix form of this symmetry group is the 48-element Oh := 〈R90, R120, R180,−I3〉 ≤
GL3(R), where

R90 =

⎡
⎣0 −1 0
1 0 0
0 0 1

⎤
⎦ , R120 =

⎡
⎣0 0 1
1 0 0
0 1 0

⎤
⎦ , R180 =

⎡
⎣0 1 0
1 0 0
0 0 −1

⎤
⎦ ,

as shown in Figure 2, and I3 is the 3× 3 identity matrix.
There is a slight complication in describing the symmetry group of the cube Ω3 := (0, π)3

that is the domain of our PDE, since Ω3 is not centered at the origin. The action of Aut(Ω3) ∼=
Oh on Ω3 is given by matrix multiplication about the center d = π/2(1, 1, 1) of the cube. That
is, for γ ∈ Oh and x ∈ Ω3, the action is defined as

γ · x = d+ γ(x− d).

The action of Oh × Z2 on the vector space of functions u : Ω3 → R is given by

((γ, β) · u)(x) = βu(γ−1 · x) for γ ∈ Oh, β ∈ Z2 = {1,−1}.
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R90 R120 R180

Figure 2. R90, R120, and R180 are matrices that rotate the cube centered at the origin by 90◦, 120◦, and
180◦, respectively. The dashed lines are the axes of rotation. The 48-element automorphism group of the cube
is identified with Oh. The matrix group Oh is generated by these three rotation matrices and −I3, the inversion
through the center of the cube.

Oh
∼= S4 × Z2 O ∼= S4 Td

∼= S4 Th
∼= A4 × Z2 T ∼= A4

Figure 3. Visualization of Oh and some of its subgroups. The group orbit of a single arrow is drawn,
suggesting a symmetric vector field. These figures show the symmetry of the Lyapunov–Schmidt reduced gradient
g̃ on 3-dimensional critical eigenspaces in bifurcations with symmetry occurring in PDE (1) on the cube. The
dotted lines show the intersections of reflection planes with the cube. The dots indicate 1-dimensional fixed-
point subspaces of the action, which intersect the cube at a vertex, edge, or face. The EBL states that solution
branches bifurcate in the direction of these 1-dimensional fixed-point subspaces in Ẽ.

It follows that the action of the generators of Oh × Z2 on eigenfunctions is

(R90, 1) · ψi,j,k = (−1)j−1ψj,i,k,

(R120, 1) · ψi,j,k = ψk,i,j,

(R180, 1) · ψi,j,k = (−1)k−1ψj,i,k,

(−I3, 1) · ψi,j,k = (−1)i+j+k−1ψi,j,k,

(I3,−1) · ψi,j,k = −ψi,j,k.

There are three subgroups of Oh with 24 elements. They are

O = 〈R90, R120, R180〉, Td = 〈−R90, R120,−R180〉, and Th = 〈R2
90, R120, R180,−I3〉,

shown in Figure 3. The group O contains the rotational symmetries of the cube (or oc-
tahedron) and is called the octahedral group. Note that Oh is the internal direct product
O× 〈−I3〉.
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The groups Td and Th are related to the 12-element tetrahedral group

T = 〈R2
90, R120, R180〉,

which contains all of the rotational symmetries of the tetrahedron. Note that Th is the internal
direct product T × 〈−I3〉, whereas Td does not contain −I3. The groups O and Td are both
isomorphic to the symmetric group S4. The isomorphism can be proved by considering how
the groups permute the four diagonals of the cube. Similarly, T is isomorphic to A4, the
alternating group. The group names involving S4 and A4 are used by the GAP program. In
our GAP programs, O and Td are computed as irreducible representations of S4. Our website,
which is written automatically using the GAP output, also uses these names [17].

3. Algorithms. The main mathematical algorithms used in the code for the results found
in this paper are the tGNGA, cGNGA, and the secant method with recursive bisection, all
of which are developed and described in detail in [16]. We give a brief overview of these
algorithms in section 3.1. The current implementation of C++ code which supervises the
execution of these algorithms has two substantial modifications not found in [16].

The first major improvement concerns the efficient way we now use our symmetry infor-
mation to reduce the matrix dimension when setting up the system for the search direction
χ used in the tGNGA. In brief, each system uses only the rows and columns corresponding
to the eigenfunctions having the symmetry of points on the branch. The time savings can be
substantial when seeking solutions with a lot of symmetry, since the numerical integrations re-
quired to form the systems are generally the most time-intensive computations that we make.
We present the details in subsection 3.2.

Secondly, the current implementation is in parallel. A serial implementation could not
reproduce our results in a reasonable time. To that end, in [18] we developed a simple
and easy-to-apply methodology for using high-level, self-submitting parallel job queues in an
MPI (message passing interface [8]) environment. In that paper, we apply our parallel job
queue techniques toward solving computational combinatorics problems, as well as provide
the necessary details for implementing our PDE algorithms in parallel C++ code in order
to obtain the results found in the current article. We include a high-level description in
section 3.3.

3.1. GNGA. To follow branches and find bifurcations, we take the parameter s to be
the (M + 1)th unknown. When we say that p = (a, s) ∈ R

M+1 is a solution, we mean that
u =

∑M
m=1 amψm solves (2) with parameter s, that is, g = 0. The (M + 1)th equation,

κ(a, s) = 0, is chosen in two different ways, depending on whether we are implementing
the tangent-augmented Newton method (tGNGA) to force the following of a tangent of a
bifurcation curve, or the cylinder-augmented Newton method (cGNGA) to force the switching
to a new branch at a bifurcation point. In either case, the iteration we use is as follows:

• compute the constraint κ, gradient vector g := gs(u), and Hessian matrix h := hs(u);
• solve [

h ∂g
∂s

(∇aκ)
T ∂κ

∂s

][
χa

χs

]
=

[
g
κ

]
;

• (a, s)← (a, s)− χ, u =
∑
ajψj .
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Equations (6) and (8) are used to compute g and h. The (M + 1)th row of the matrix is
defined by (∇aκ,

∂κ
∂s ) = ∇κ ∈ R

M+1; the search direction is χ = (χa, χs) ∈ R
M+1. Since this

is Newton’s method on (g, κ) ∈ R
M+1 instead of just g ∈ R

M , when the process converges we
have not only that g = 0 (hence p = (a, s) is an approximate solution to (1)), but also that
κ = 0.

We use the tGNGA to follow branches. The details are given in Algorithm 1 of [16]. In
brief, given consecutive old and current solutions pold and pcur along a symmetry-invariant
branch, we compute the (approximate) tangent vector v = (pcur− pold)/‖pcur− pold‖ ∈ R

M+1.
The initial guess is then pgs = pcur + cv. The speed c has a minimum and maximum range,
for example from 0.01 to 0.4, and is modified dynamically according to various heuristics.
For example, this speed is decreased when the previous tGNGA call failed or the curvature
of the branch is large, and is increased toward an allowed maximum otherwise. For the
tGNGA, the constraint is that each iterate p = (a, s) must lie on the hyperplane passing
through the initial guess pgs, perpendicular to v. That is, κ(a, s) := (p − pgs) · v. Easily, one
sees that (∇aκ(a, s),

∂κ
∂s (a, s)) = v. In general, if fs has the form fs(u) = su + H(u), then

∂g
∂s = −a. Our function tGNGA(pgs, v) returns, if successful, a new solution pnew satisfying the
constraint. Figure 4 shows how repeated tGNGA calls are made when a worker executes a
branch-following job.

The constraint used by the cGNGA (see Algorithm 3 of [16]) at a bifurcation point p∗ instead
forces the new solution pnew to have a nonzero projection onto a subspace E of the critical
eigenspace Ẽ. To ensure that we find the mother solution rather than a daughter, we insist
that the Newton iterates belong to the cylinder C := {(a, s) ∈ R

M+1 : ‖PE(a − a∗)‖ = ε},
where PE is the orthogonal projection onto E and the radius ε is a small fixed parameter.
At a symmetry breaking bifurcation the critical eigenspace is orthogonal to the fixed-point
subspace of the mother, so the mother branch does not intersect the cylinder. The constraint
we use to put each Newton iterate on the cylinder is κ(a, s) = 1

2(‖PE(a − a∗)‖2 − ε2) = 0.
The initial guess we use is pgs := (a∗, s∗) + ε(e, 0), where e is a randomly chosen unit vector
in E. Clearly, pgs lies on the cylinder C. A computation shows that ∇aκ(a, s) = PE(a− a∗)
and ∂κ

∂s (a, s) = 0. When successful, cGNGA(p∗, pgs, E) returns a new solution pnew that lies on
the cylinder C.

In the above paragraph, we take E to be various low-dimensional subspaces of the critical
eigenspace, corresponding to the symmetries of solutions that are predicted by bifurcation
theory. For example, at an EBL bifurcation, E is spanned by a single eigenvector. When the
dimension of E is greater than one, we call cGNGA repeatedly with several random choices of
the critical eigenvector e. The details are given in equation (7) and Algorithm 3 of [16]. The
theory we apply does not guarantee a complete prediction of all daughter solutions. Therefore
we also call cGNGA with E equal to the full critical eigenspace. In this way, if the dimension
of the critical eigenspace is not too big, we have a high degree of confidence that we are
capturing all relevant solutions, including those that arise due to accidental degeneracy and
that are neither predicted nor ruled out by understood bifurcation theory. The number of
guesses in each subspace is heuristically dependent on the dimension of the subspace. Too
many guesses wastes time, and too few will cause bifurcating branches to be missed. Figure 4
shows how repeated cGNGA calls are made when a worker executes a find daughters job.
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repeat
wait for a message from the boss
switch the message is a

case follow branch job
while branch is in window do

compute next point on branch with tGNGA
if change in MI then

call secant-bisection to find intervening bifurcation points
for each intervening bifurcation point do

put find daughters job on queue

use interpolated guess and tGNGA to get last point on window boundary

case find daughters job
for each possible bifurcation subspace of critical eigenspace do

while new solutions still being found do
make a random guess in subspace and call cGNGA
if new solution is nonconjugate to previously found solutions
then

put follow branch job on queue

case stop command
stop

Figure 4. Pseudocode for the main loop of the workers. This loop is entered after loading basis
and symmetry files. Whenever idle, each worker accepts and runs jobs whenever such jobs exist.
The boss puts the trivial solution branch on the job queue as the first job. It manages the queue
while the workers do their jobs, until the queue is empty, and then sends all workers a stop job.

We use the secant method to find bifurcation points. In brief, when using the tGNGA to
follow a solution branch and the MI changes at consecutively found solutions, say from k at
the solution pold to k + δ at the solution pcur, we know by the continuity of D2Js that there
exists a third, nearby solution p∗ where h is not invertible and the rth eigenvalue of h is zero,
where r = k + � δ2�. Let p0 = pold, p1 = pcur, with β0 and β1 the rth eigenvalues of h at the
points p0 and p1, respectively.

We effectively employ the vector secant method by iterating
• pgs = pi − (pi−pi−1)βi

(βi−βi−1)
,

• pi+1 = tGNGA(pgs, v)
until the sequence (pi) converges. The vector v = (pcur − pold)/‖pcur − pold‖ is held fixed
throughout, while the value βi is the newly computed rth eigenvalue of h at pi. If our function
secant(pold, pcur) is successful, it returns a solution point p∗ = (a∗, s∗), lying between pold and
pcur, where h has δ zero eigenvalues within some tolerance. We take the critical eigenspace
Ẽ to be the span of the corresponding eigenvectors. If p∗ is not a turning point, then it is a
bifurcation point.
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In fact, it is possible that several intervening bifurcation points exist. If the secant method
finds a bifurcation point that has fewer than d zero Hessian eigenvalues, there must be an-
other bifurcation point in the interval. In Figure 4, the secant-bisection call refers to an
implementation of Algorithm 2 from [16] entitled find bifpoints, whereby such an occur-
rence triggers a bisection and a pair of recursive calls back to itself. Upon returning, each of
the one or more found bifurcation points spawns its own find daughters job. In turn, each
time a (nonconjugate) daughter is found, a new follow branch job is put on the queue.

3.2. The block diagonal structure of the Hessian. The majority of the computational
effort for solving PDE (1) using Newton’s method comes from the computation of the entries
of the Hessian matrix. The time required can be drastically reduced by taking advantage of
the block diagonal structure of the Hessian that follows from the isotypic decomposition of
V = R

M , the Galerkin space.
If the initial guess u has symmetry Γi, then the isotypic decomposition (12) of the Γi

action on V is V =
⊕

k V
(k)
Γi

, where k labels the irreducible representations of Γi. We assume

that k = 0 denotes the trivial representation, so Fix(Γi) = V
(0)
Γi

.
For any u ∈ Fix(Γi), the symmetry of the PDE implies that the gradient gs(u) is also in

Fix(Γi), and the Hessian, evaluated at u, maps each of the isotypic components to itself. That
is,

u ∈ Fix(Γi) =⇒ gs(u) ∈ Fix(Γi) and hs(u)
(
V

(k)
Γi

)
⊆ V (k)

Γi
.

Thus, the Hessian is block diagonal in the basis BΓi defined in section 2.3. A huge speedup
of our program is obtained by only computing the Hessian restricted to Fix(Γi) when doing
Newton’s method. After a solution is found, the block diagonal structure of the Hessian allows
its efficient computation by avoiding integration of zero terms. The full Hessian is required
for the calculation of the MI.

Actually, the way we achieve a speedup in our numerical algorithm is not quite this
simple. In our implementation of the GNGA we always use BΓ0 , a basis of eigenvectors

of the Laplacian. The basis vectors are partitioned into bases B
(k)
Γ0

for each of the isotypic
components of the Γ0 action on V . We do not change the basis depending on the symmetry of
the solution we are approximating. Hence, we do not simply compute the blocks of the block
diagonal Hessian.

When doing Newton’s method, we use a reduced Hessian h̄s in place of the full Hessian

hs. Define P (k)v to be the projection of v onto V
(k)
Γi

. For u ∈ Fix(Γi), the reduced Hessian is
defined to be

h̄s(u)j,k =

⎧⎪⎨
⎪⎩
hs(u)j,k if P (0)ψj �= 0 and P (0)ψk �= 0,

λj − s if j = k and P (0)ψj = 0,

0 if j �= k and (P (0)ψj = 0 or P (0)ψk = 0).

For each u ∈ Fix(Γi), assuming hs and h̄s are nonsingular, the Newton search direction is
the solution to either system hs(u)χ = gs(u) or h̄s(u)χ = gs(u). The terms in the reduced
Hessian of the form (λj − s)δj,k are included to make h̄s nonsingular. They are not strictly
necessary since we find the least squares solution χ with the smallest norm, but they improve
the performance of the LAPACK solver (dgelss).
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After the solution is found, we identify those elements of the full Hessian that are known to
be zero, and avoid doing numerical integration for those elements. In particular, hs(u)p,q = 0
if there is no k such that P (k)ψp �= 0 and P (k)ψq �= 0.

As a simple example for demonstration purposes, suppose that there are M = 5 modes,
and we are using the basis vectors ψ1, . . . , ψ5. Suppose further that the isotypic decomposition

of the Γi action is V
(0)
Γi

= span{ψ1, ψ3}, V (1)
Γi

= span{ψ2}, V (2)
Γi

= span{ψ4 + ψ5}, and V (3)
Γi

=

span{ψ4 − ψ5}. The only nonzero projections are P (0)ψ1, P
(0)ψ3, P

(1)ψ2, P
(2)ψ4, P

(2)ψ5,
P (3)ψ4, and P

(3)ψ5. Thus, if u ∈ Fix(Γi), the gradient and Hessian have the form

(14) gs(u) =

⎡
⎢⎢⎢⎢⎣
∗
0
∗
0
0

⎤
⎥⎥⎥⎥⎦, hs(u) =

⎡
⎢⎢⎢⎢⎣
∗ 0 ∗ 0 0
0 ∗ 0 0 0
∗ 0 ∗ 0 0
0 0 0 ∗ ∗
0 0 0 ∗ ∗

⎤
⎥⎥⎥⎥⎦.

Note that a change of basis could be done to diagonalize the lower-right 2× 2 block, but our
program does not do this. When we solve for the search direction χ in Newton’s method, we
use the restricted Hessian

h̄s(u) =

⎡
⎢⎢⎢⎢⎣
∗ 0 ∗ 0 0
0 λ2 − s 0 0 0
∗ 0 ∗ 0 0
0 0 0 λ4 − s 0
0 0 0 0 λ5 − s

⎤
⎥⎥⎥⎥⎦ ,

where only the ∗ terms are computed using numerical integration. Thus, in this small exam-
ple, four numerical integrations are needed to compute the reduced Hessian for each step of
Newton’s method, and nine numerical integrations are needed to compute the full Hessian.

The speedup obtained in this manner is quite dramatic for solutions with high symmetry
whenM is large. As an example, for the PDE on the cube the primary branch that bifurcates
at s = 3 has symmetry Γ2

∼= Oh. The Γ2 action on V has 10 isotypic components. Our pro-
gram, with M̃ = 15 and hence M = 1848, processes these solutions 10 to 15 times faster than
it processes solutions with trivial symmetry, where there is just one isotypic component and
all M(M + 1)/2 = 1, 708, 474 upper-triangular elements of the Hessian need to be computed
for every step of Newton’s method. Each one of these Hessian elements requires a sum over
N = 29, 729 grid points (see (8)). Considering the whole process of finding a solution with
Γ2 symmetry using three or four steps of Newton’s method, and then computing the MI of
this solution, the majority of the computational effort comes from the numerical integrations
needed to compute the full Hessian once after Newton’s method converges. Even with the
speedup indicated in (14), the single computation of hs(u) takes longer than the total time to
perform all the other computations. These include the computation of the reduced Hessian
h̄s(u) and gradient gs(u), and the LAPACK calls to solve h̄s(u)χ = gs(u) at each Newton
step, as well as the LAPACK computation of the eigenvalues of the full Hessian evaluated at
the solution.
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Figure 5. The load diagram showing the number of jobs (branch-following and bifurcation processing) and
the number of active workers. There were 24 processors and thus 23 workers. The jobs above the dotted line are
waiting in the job queue. The total time for the run was 192,094 seconds ≈ 53.4 hours. The average number
of active workers is 15.6. Thus, the run would have taken approximately 34 days with a single processor.

3.3. Parallel implementation of branch following. It was necessary to implement our
code in parallel in order to get timely results. We use a library of functions (MPQueue)
presented in [18] which make it easy to create and manage a parallel job queue. For the
current application of creating a bifurcation diagram, we choose a natural way to decompose
the task into two types of jobs, namely branch-following and find daughters jobs. The boss
starts MPI and puts the trivial solution branch on the queue as the first job. After initialization
and whenever idle, each worker accepts and runs jobs whenever they exist. The boss manages
the queue while the workers do their jobs, until the queue is empty, and then sends all workers
a stop command. Figure 4 shows how a parallel job queue is used to supervise the running of
the jobs.

Normal termination for branch-following jobs occurs when the branch exits a parameter
interval for s. When a change in MI is detected during branch following, the secant method is
used to find an intervening bifurcation point with a proscribed zero eigenvalue of the Hessian
of J . Recursive bisection is used if the number of zero eigenvalues of a found bifurcation point
does not equal the observed change in MI over a given subinterval, ensuring that all intervening
bifurcation points are found. Each bifurcation point spawns a find daughters job. These jobs
invoke the cGNGA with multiple random guesses from all possible bifurcation subspaces of
the critical eigenspace. The number of attempts depends heuristically on the dimension of
each subspace, stopping after sufficiently many tries have failed to find a new solution not in
the group orbit of any previously found solution. Each new, bifurcating solution spawns a
follow branch job.

We conclude this subsection with an example demonstrating the parallel run times en-
countered when generating our results for the cube region. In particular, Figure 5 shows the
load diagram of a run for PDE (1) on the cube with M̃ = 15, which gives M = 1848 modes
and uses N = 313 grid points. We followed all branches connected to the trivial branch with
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0 ≤ s ≤ 13, up to four levels of bifurcation. The code found 3168 solutions lying on 111 non-
conjugate branches, with 126 bifurcation (or fold) points. This 2-day run used 24 processors
and generated all the data necessary for Figures 14, 15, 20, 21, and 22 below. In Table 6.1 of
[18] we provide run time data for a similar problem using a varying number of processors, in
order to demonstrate scalability.

3.4. Creating contour plots. We now describe the process of creating a contour plot for
visually depicting an approximate solution on the square and cube. For the square contour plot
graphics found in Figures 9 and 11, we use M̃ = 30 leading to N = 612 grid points. This is a
sufficient number of grid points to generate good contour plots. The cube solutions visualized
in the contour plot graphics found in Figures 15, 19, 21, 22, and 25 were all obtained via
GNGA using M̃ = 15 leading to M = 1848 modes and N = 313 grid points. This resolution
is not quite sufficient for generating clear contour plots. Using the M coefficients and the
exact known basis functions, we reconstruct u on a grid with 563 points before applying the
techniques described below.

When Ω is the cube, since u = 0 on the boundary we plot u on the boundary of a smaller
concentric cube. The faces of this inner cube are five grid points deep from the original
boundary. Thus each of the six faces we draw has u values on (56 − 2 · 5)2 grid points. The
side length of the cube seen in the figures is about 46/56 = 82% the length of the original
cube. At the end of the process, the contour plots on the six faces of the inner cube are
assembled into a front and back view. We use a standard perspective mapping from R

3 to R
2

to join three of the six faces for each view.
In the remainder of this subsection, we describe how to make a contour map for a function

u : Ω → R on the square or cube. First, an algorithm chooses one function in the group
orbit Γ0 · u that makes the symmetry of the contour map agree with the flag diagram. It
also replaces u by −u if this saves ink. For example, if the function has a 3-fold symmetry
about a diagonal of the cube, our algorithm chooses a function that satisfies (R120, 1) · u = u,
since the axis of rotation of R120 points toward the viewer. Then we have the values of u on
a square grid (from the square or a face of the cube), as shown in Figure 6(a). We do some
data preprocessing, depicted in Figures 6(b)–(d), in order to get acceptable plots when there
are many data points with u = 0, which is common because of the symmetry of solutions.
After interpolation (Figure 7(e)), the positive region is the union of many polygons, mostly
squares (Figure 7(f)). Redundant edges are eliminated to obtain a few many-sided polygons
that are shaded (Figure 7(g)). The contours are obtained by the same algorithm: It finds the
many-sided polygons enclosing the regions where u ≥ c, but just the boundary is drawn. Our
implementation directly creates PostScript files. Without the elimination of redundant edges,
the files would be of an unreasonably large size, and the contours could not be drawn with
the same algorithm.

We now provide the details. Let (x, a) represent a point where x ∈ R
n, n = 2 or 3, is a

grid point and a ∈ R such that u(x) ≈ a for a given solution u. We use the following steps as
visualized by Figures 6 and 7:

1. Square creation (a)�(b): In the first step, we break the square grid into individual
squares to be handled separately. We represent one of these squares with the cycle
((x1, a1) · · · (x4, a4)) containing the corner points.
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Figure 6. Square creation, followed by zero localization and zero purge. Continued in Figure 7.
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Figure 7. Boundary detection, followed by polygon creation and polygon merging.

2. Zero localization (b)�(c): We eliminate several zero values in a row by applying the
rule

· · · (x, a)(y1, 0) · · · (yn, 0)(z, b) · · · � · · · (x, a)(y1, a) · · · (yn, b)(z, b) · · ·

to each cycle where the variables a and b represent nonzero values.
3. Zero purge (c)�(d): We eliminate the zero values without a sign change by applying

the rule
· · · (x, a)(y, 0)(z, b) · · · � · · · (x, a)(y, (a + b)/2)(z, b) · · · ,

where ab > 0.
4. Boundary detection (d)�(e): We insert zero points between sign changes using the

rule

· · · (x, a)(y, b) · · · � · · · (x, a)
( |b|x+ |a|y
|a|+ |b| , 0

)
(y, b) · · · ,

where ab < 0. The location of the new zero point is determined using linear interpo-
lation. The number k of zeros in the cycle after this step must be 0, 2, or 4.

5. Polygon creation (e)�(f): Now we create polygons with shaded inside to indicate
positive values.
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(a) If k = 0 and ai > 0 for all i in the cycle ((x1, a1) · · · (x4, a4)), then we create
the polygon with these corner points. This occurs in the lower-right square of
Figure 7(e). Note that if ai < 0, then no polygon is created.

(b) If k = 2, then we create a polygon for each cyclic pattern of the form

(x, 0)(y1, a1) · · · (yn, an)(z, 0)

with a1, . . . , an all positive. There is an example of this with n = 2 in the upper-
right square and an example with n = 3 in the lower-left square of Figure 7(e).
It is also possible to have n = 1, but this is not shown in the example.

(c) If k = 4, then we find the intersection (c, 0) of the line segments joining opposite
zeros. Then we look for cyclic patterns of the form

(x, 0)(y, a)(z, 0)

with a positive. For each such pattern we create the polygon with corner points

(x, 0), (y, a), (z, 0), (c, 0).

This happens in the upper-left square of Figure 7(e).
6. Polygon merging (f)�(g): We combine polygons sharing a side into a single polygon.

This gives the zero set which is the boundary of the shaded positive region. This single
polygon is written directly to a PostScript file. Polygon merging is a time-consuming
operation, but writing the merged polygons instead of the individual ones reduces the
size of the PostScript file significantly.

7. Level curve creation: Level curves are created using the previous steps. We use the
zero set of u− c as the level curve of u = c. The original grid values are changed by
the shift value c, and only the final merged polygon is written to the PostScript file
without shading. Note that polygon merging is essential for finding level curves.

8. Local extremum dots (g): White dots are drawn at the estimated position of local
extrema in the u > 0 region, as indicated in Figure 7(g). Every interior data point
(x, a) is checked to see whether a is at least as large (or at least as small) as bi for the
eight neighbors (xi, bi). For the data in Figure 6(a), only the center point is checked,
and it is indeed a local maximum grid point. For each local extremum grid point, a
more precise estimate of the extreme point is found by fitting a quadratic function
to the nine data points with the extreme grid point at the center. Since a quadratic
function f : R2 → R has six constants, the least squares solution for the nine equations
in six unknowns is found. Then standard calculus gives the position of the extreme
point of f , and a dot is drawn there. For the data in Figure 6(a), the maximum point
of the fitted f is located half way to the grid point to its lower left. Similarly, black
dots are drawn at the estimated positions of the local extrema in the white (u < 0)
region.

4. The PDE on the square and D4 symmetry. In this section we revisit the case where Ω
is the unit square. We first studied the square case in [19], without the benefit of automation
or our recent improvements in branch following. In that paper, all of the symmetry analysis
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was done by hand. Each of the few bifurcation points we analyzed were essentially small
projects in themselves, as were monotonic segments of the branches connecting them. In
the present article, we use our automatically generated bifurcation digraph and new Newton
algorithms to quickly reproduce the old results and then go much further (s� λ1) in finding
solutions of every possible symmetry type. We also show that we can handle some accidental
degeneracies that occur in the square case.

Figure 8 contains the condensed bifurcation digraph for PDE (1) on a region with D4

symmetry. This digraph, along with the files required by our GNGA code for following
bifurcations, was automatically generated by our code. For clarity, we have chosen here
to annotate the vertices of the digraph with schematic diagrams, i.e., contour plots of step
functions on the square which display the proper symmetries in a visually obvious way. A
solid line in the schematic diagrams represents a nodal line, whereas a dashed line is a line of
reflectional symmetry, and a dot is a center of rotational symmetry. Contour plots of actual
solutions can be found in Figure 9. The bifurcation digraph was described in subsection 2.2,
and a more thorough discussion is in [16].

The bifurcation digraph in Figure 8 is condensed, as described in [16, 22]. Two symmetry
types Si and Sj are in the same condensation class if there is an automorphism of Γ0 that
permutes symmetry types and takes Si to Sj . The symmetry types are grouped into conden-
sation classes, and not all of the arrows are drawn. For example, one condensation class is the
block of four symmetry types near the top. The condensation class has three arrows emanat-
ing from it, but in the uncondensed bifurcation digraph there are five arrows emanating from
each of the four solution types in the block. The little numbers near the arrow tails count the
number of arrows emanating from each solution. Similarly, the little numbers near the arrow
heads count the number of arrows ending at each of the solution types in the condensation
class.

At the top of Figure 8 is the trivial function u ≡ 0, whose symmetry is all of D4×Z2. At the
bottom is a function with trivial symmetry, i.e., whose symmetry is the group containing only
the identity. There are four generic bifurcations with Z2 symmetry from the trivial branch.
For these bifurcations the critical eigenspace Ẽ is the 1-dimensional irreducible subspace for
Z2, and there is a pitchfork bifurcation creating two solution branches, (us, s) and (−us, s), at
some point (0, s∗). The figure at the bottom left indicates the symmetry of a vector field in Ẽ.
We can think of this as the ODE on the 1-dimensional center manifold, or Lyapunov–Schmidt
reduced bifurcation equation g̃ = 0. There is one generic bifurcation with D4 symmetry
from the trivial branch. Here the 2-dimensional critical eigenspace Ẽ has lines of reflection
symmetry across “edges” and nonconjugate lines of reflection symmetry across “vertices,” as
shown in the bottom middle part of Figure 8. At the bifurcation there are two conjugacy
classes of solution branches; therefore the bifurcation digraph has two arrows labeled D4

coming out of the trivial solution. On the condensed bifurcation digraph these two arrows are
collapsed into one. Note that there are several more bifurcations with Z2 symmetry or with
D4 symmetry in the bifurcation digraph. For example, each of the four solution types in the
second row can have a bifurcation with D4 symmetry.

There is only one more type of generic bifurcation that occurs in PDE (1) on the square:
a bifurcation with Z4 symmetry. This is a generic bifurcation in this gradient system [16],
and the daughter solutions can be anywhere in the 2-dimensional irreducible subspace (except



PDE ON THE CUBE 1259

Z2

4

��

D4

2

��

Z2

2����
��
���

��
���

��
��
���

��
���

��
��
���

�

Z2

2

2
��

D4

2

2

��

Z2

2

����
��
���

��
���

��
��
���

��
���

��
��
���

�

Z2

2

����
��
��
��
��
��
��
��

Z2

2

��
��
��
��
��
��
��
��
��

Z4

2
		

Z2

��

Z2

4

��
��
��
��
��
��
��
��
��

Z2

4
��

Z2

����
��
��
��
��
��
��
��
��
��
��

Z2

���
��

��
��

��
��

��
��

��
��

��
�

Z2 D4 Z4

Figure 8. Condensed bifurcation digraph for a PDE on the square (top), and the irreducible spaces for the
generic bifurcations in the digraph (bottom).
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Figure 9. Contour plots of solutions on the square of each symmetry type, with schematic diagrams (see
Figure 8).



PDE ON THE CUBE 1261

Odd MI
Even MI

Contour Plot
Bifurcation Point

22

20

22

21

21

21
21

2220310

Z2

Z2

Z2

Z2 × Z2

s

u
(x

∗ ,
y
∗ )

5

4

3

2

1

0

-1

-2
35302520151050

∗

Figure 10. A partial bifurcation diagram for PDE (1) on the square, showing just one primary branch and
selected daughter branches. The value of u(x∗, y∗) is plotted versus s, where (x∗, y∗) is a generic point of the
square, as shown in the figure on the right. A generic point is not on any of the lines of reflection symmetry,
and we choose a point equidistant from those lines and the boundary. The open dots show bifurcation points,
and the group of the bifurcation is shown for some. The small numbers indicate the MI of the solutions: solid
lines show an even MI, whereas dashed lines show an odd MI. The solid dots at s = 0, from top to bottom,
correspond to the contour plots in Figure 11, from left to right.

the origin) since there are no lines of reflection symmetry. Note the use of a dotted arrow
type for this bifurcation, and that there are no dashed arrows in this particular bifurcation
digraph. The reduced bifurcation equations on the critical eigenspace at this bifurcation have
the symmetry indicated at the lower-right part of Figure 8.

Figure 9 contains the contour plot of an example solution to (1) at s = 0 for each of the 20
possible symmetry types on the square. The contour heights are ±c2−h with h ∈ {0, . . . , 4}
and an appropriate c near max(|u|), to give more contours near u = 0. These figures were
made with M̃ = 30, meaning that the largest frequency in each direction is 30. Thus the
mode with the smallest eigenvalue that is left out of the basis is ψ31,1. This leaves M = 719
modes in our basis. Unlike [19], where an initial guess for each branch needed to be input by
humans, the solutions in Figure 9 were found automatically by following all of the primary
branches that bifurcated from the trivial solution, and all of the secondary branches, etc.,
recursively as described in [16].

In addition to generic bifurcations, the PDE on the square has degenerate bifurcations due
to the “hidden symmetry” of translation in the space of periodic functions [12]. For example,
the bifurcation point at s = λ3,5 = 34 on the trivial branch a∗ = 0 has an accidental degeneracy
of Type 2 as defined in [16]. Figure 10 shows a partial bifurcation diagram containing this point
and three levels of branches bifurcating from it; corresponding contour plots of solutions are
found in Figure 11. A bifurcation diagram showing branches that bifurcate at s ≤ λ2,3 = 13
is shown in [19].

The 2-dimensional critical eigenspace at this primary bifurcation point is Ẽ = span{ψ3,5,
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Figure 11. A sequence of solutions obtained at s = 0 by following a chain of Z2 bifurcations from the trivial
solution with full D4 × Z2 symmetry down to a solution with trivial symmetry. The sequence of bifurcations
shown is a path in the bifurcation digraph in Figure 8. The first solution shown is on a primary branch
bifurcating at s = λ3,5 = λ5,3 = 34, and is approximately a multiple of ψ3,5 − ψ5,3. The four contour plots
represent the solutions indicated by the four black dots in Figure 10.

ψ5,3}. The trivial branch, whose symmetry is Γ0
∼= D4 × Z2, undergoes a bifurcation with

Γ0/Γ
′
0
∼= Z2 × Z2 symmetry at s = 34. The action of Z2 × Z2 on Ẽ is generated by

bψ3,5 + cψ5,3 → cψ3,5 + bψ5,3 and bψ3,5 + cψ5,3 → −bψ3,5 − cψ5,3.

Our code uses the ordered basis (ψ3,5+ψ5,3, ψ3,5−ψ5,3). In this basis, the action of Γ0/Γ
′
0 on

Ẽ is isomorphic to the natural action of〈[
1 0
0 −1

]
,

[−1 0
0 −1

]〉
∼= Z2 × Z2

on [Ẽ] = R
2 = R⊕R. Note that Ẽ is not an irreducible space; this is a degenerate bifurcation.

The basis vectors were chosen to span the two 1-dimensional irreducible subspaces, which are
also fixed-point subspaces of the Γ0/Γ

′
0 action on Ẽ and therefore g̃-invariant subspaces. Each

of these subspaces is used as an E ⊆ Ẽ in the cGNGA algorithm described in section 3.1. A
pitchfork bifurcation generically occurs in each of these 1-dimensional invariant spaces.

The 1-dimensional subspaces span{ψ3,5} and span{ψ5,3} ⊆ Ẽ, corresponding to
span{(1, 1)} and span{(−1, 1)} ⊆ R

2, respectively, are not fixed-point subspaces. However,
they are AIS (see section 2.2) of g̃ : Ẽ → Ẽ, since ψ3,5 (and ψ5,3) can be periodically extended
to tile the plane with a solution to the PDE (1). There is a primary branch of solutions which
is tangent to {(u, s) = (aψ3,5, 34) | a ∈ R} at (0, 34). Thus, there are at least three (conjugacy
classes of) solution branches bifurcating from this degenerate bifurcation with Z2×Z2 symme-
try. Near the bifurcation, the nontrivial solutions are approximately multiples of ψ3,5 + ψ5,3,
ψ3,5 − ψ5,3, or ψ3,5 (or its conjugate ψ5,3). Figure 10 shows a partial bifurcation diagram
which follows the primary branch which is approximately a multiple of ψ3,5 − ψ5,3 near the
bifurcation.

Figure 11 shows contour plots of example solutions along a particular path in the bifurca-
tion digraph shown in Figure 8. The primary branch is created at the degenerate bifurcation
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Figure 12. A measure of the error of our approximation to the CCN solution (i.e., the minimal energy
sign-changing solution [5]) of PDE (1) at s = 0, as a function of M̃ . The region used was Ω = (0, 1)2 to
facilitate comparison with Figure 7(b) of [19].

with Z2 × Z2 symmetry at s = 34 discussed above. The critical eigenspace is 2-dimensional
at s = λ3,5 = 34, and this bifurcation is not on the bifurcation digraph, Figure 8, which
only shows generic bifurcations. There are two primary branches conjugate to the one shown,
four secondary branches, eight tertiary, and 16 branches conjugate to the solution with trivial
symmetry shown in Figure 11. At each bifurcation our GNGA code follows exactly one of the
conjugate branches that bifurcate.

Figure 12 contains a numerical demonstration of the convergence of the GNGA as the
number of modes increases. In Figure 7(b) of [19], we previously provided a portion of a
similar graph of the L2 norm of Δu+ u3 versus M̃ for a particular solution u. That graphic
was not entirely convincing in showing convergence to 0. Using our current code with larger
values of M̃ and a smaller convergence tolerance in Newton’s method, we recomputed the
data for the same problem and obtained the more accurate numerical result displayed here.

5. The PDE on the cube. The PDE (1) on the cube has a rich array of bifurcations with
symmetry. If Ω is a planar region, only bifurcations with Dn or Zn symmetry are present in
the bifurcation digraph. The bifurcation digraph of the PDE on the cube includes bifurcations
with Z2 symmetry, which have 1-dimensional critical eigenspaces. The digraph also includes
bifurcations with Zn or Dn symmetry, n ∈ {3, 4, 6}, for which the critical eigenspace is 2-
dimensional. A novel feature of the PDE on the cube is that there are five bifurcations with
symmetry that have 3-dimensional critical eigenspaces, shown in Figure 3.

Recall [16] that a generic bifurcation with Γ symmetry has a critical eigenspace Ẽ that is
a faithful, irreducible representation space of Γ. Faithful means that only the identity in Γ
acts trivially on Ẽ, and irreducible means that no proper subspace or Ẽ is Γ-invariant.

Faithful, irreducible representation spaces for D4 and Z4 were shown in Figure 8, and
the generalization to Dn and Zn is obvious. Note that there are no such representation
spaces for Z2 × Z2, since no 1-dimensional representation space is faithful, and every 2- or
higher-dimensional representation space is reducible. Recall that the bifurcation with Z2×Z2

symmetry that occurs at s = 34 in Figure 10 is not generic. That bifurcation point has a
Type-2 degeneracy [16].
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Symmetry types, partitioned into condensation classes.
Nonisomorphic types are separated with a “:”
:0: 1 2 3 4 : · · · : 19 : 20 21 22 23 : · · · : 87 : 88 . 89 90 91 92 . 93 94 . 95 . 96 97 : 98

Bifurcates from: 0 2

Symmetry type: 21, representatives are isomorphic to D6

(Flag diagram and back and front contour plots appear here.)

Bifurcation with (symmetry) to (symmetry type):
| Z2 → 55 | Z2 → 58 | Z2 → 57 | D6 → 91 92 | D3− → 80

View: 55 58 57 91 92 80

S21
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Z2

S58
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S91
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S4S4×Z2

Figure 13. A schematic representation of the page for symmetry type S21 from the companion website [17],
along with the corresponding arrows in the bifurcation digraph. The labels on the top two arrows are found in
the pages for symmetry types S0 and S2, respectively.

This section contains our main new numerical results, namely approximate solutions to (1)
on the cube. For convenience, we denote the 99 symmetry types of solutions to this PDE on
this region by S0, . . . , S98. Obtaining accurate approximations on this 3-dimensional region
requires a large number of grid points. We use a parallel implementation as described in
section 3.3.

In subsection 5.1, we give an overview of features of the bifurcation digraph, which is too
big to include in its entirety in a single document. We describe how our companion website
[17] can be used to navigate the digraph in order to view graphics and understand various
symmetry information across the spectrum of solutions. In the remaining subsections, we
include a survey of our numerical results which showcases our analysis of the bifurcations
with the most interesting symmetries.

5.1. The bifurcation digraph. The bifurcation digraph of the Oh×Z2 action on V = BM

or H is far too complicated to display as a figure in this paper. Our website [17] has a page
for each symmetry type Si, encoding the arrows emanating from this symmetry type, along
with additional information.

An example from the companion website for symmetry type S21 is shown in the top half
of Figure 13. The first box contains links to all the symmetry type pages. The 99 symmetry
types are grouped into isomorphism classes by colons. The isomorphism classes are further
subdivided into condensation classes by periods (see section 4 and [16, 22]). The abbreviated
list in Figure 13 shows, for example, that S0, S19, S87, and S99 are singleton condensation
classes and that {S20, S21, S22, S23} is a condensation class. The symmetry types S88 through
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Figure 14. Partial bifurcation diagram for PDE (1) on the cube, showing the first three bifurcation points
of the trivial branch. The two bifurcations with Oh symmetry and three bifurcations with Z2 symmetry are
indicated by open circles. The symmetry type of the trivial branch is S0, as indicated on the right. The
symmetry types of the other branches are shown on the left. The small numbers indicate the MI of the solution.
The solution branches with symmetry type S21 and S45 are truncated to simplify the diagram. The solid dots at
the left correspond to the contour maps shown in Figure 15, and contour maps for the other solution branches
are shown in Figure 16.

S97 are all isomorphic. These 11 symmetry types are separated into five condensation classes.
For example, {S93, S94} is a condensation class.

The second box indicates that there are arrows in the bifurcation digraph pointing from
S0 and from S2 to S21.

The third box indicates that any Γi ∈ S21 is isomorphic to D6, and contains the graphics
on the web page. There is a flag diagram for every symmetry type, and contour plots if our
computer program found a solution with this symmetry type. About half of the symmetry
types feature contour plots.

The fourth box encodes the six arrows in the bifurcation digraph emanating from S21, as
shown in the bottom half of Figure 13. In addition, the arrows are separated into the five
generic bifurcations with symmetry coming from the five nontrivial irreducible representations
of D6. The symmetry types in any condensation class have an identical pattern of generic
bifurcations, with different labels of the symmetry types. Thus, there are six arrows emanating
from each of the symmetry types in the class {S20, S21, S22, S23}. In the condensed bifurcation
digraph, these 24 arrows are represented by just six arrows.

The final box contains buttons to view selected daughter flag diagrams.

5.2. Bifurcations from the first three eigenvalues. Figure 14 shows the bifurcation dia-
gram for the solution branches that are connected to the trivial solution branch with s ≤ 10.
The value of u at a generic point is plotted against the parameter s. The trivial branch has a
bifurcation with Z2 symmetry at s = λ1,1,1 = 3 where the MI changes from 0 to 1. The trivial
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S2

F : S12

V : S22

E: S44

Figure 15. Contour plots for the solutions indicated with a solid dot in Figure 14. The contour lines for
functions on the cube are equally spaced. The positive solution, with symmetry type S2, bifurcates at s = 3.
Representatives of the face, vertex, and edge solutions (denoted by F , V , and E) that bifurcate at s = 6 are
shown. The vertex solution with symmetry type S22 is the CCN solution. The names are derives from the
position of the critical points of g̃ : Ẽ → Ẽ. The equivariance of the vector field g̃ is shown in Figure 3.

branch has two bifurcations with Oh symmetry, at s = λ1,1,2 = 6 and at s = λ1,2,2 = 9. The
MI changes by 3 at each of these bifurcations, indicating a 3-dimensional critical eigenspace
Ẽ.

At s = 3, the symmetry of the mother branch is Γ0 = Oh × Z2. The critical eigenspace
is Ẽ = span{ψ1,1,1}. All of the reflections and rotations in Oh act trivially on Ẽ. That is,
Γ′
0 = 〈(R90, 1), (R120, 1), (R180, 1), (I3, 1)〉 = Γ2

∼= Oh. Thus, the effective symmetry of the
bifurcation is Γ0/Γ

′
0 = 〈(I3,−1)Γ′

0〉 ∼= Z2 = {−1, 1}. The primary branch created at s = 3
has symmetry Γ2, and symmetry type S2 = {Γ2}, as shown in Figures 14 and 15.
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V : S21

E: S45

F : S14

Secondary: S51

Tertiary: S80

Figure 16. Contour plots for the vertex, edge, and face solutions that bifurcate at s = 9 in Figure 14, along
with a daughter and granddaughter of the face solution. The contour plots are for the solutions at s = 0.
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The trivial solution undergoes a bifurcation with Oh symmetry at both s = λ1,1,2 = 6
and s = λ1,2,2 = 9. The bifurcations are very similar. The critical eigenspaces for the two
bifurcations are

Ẽ6 = span{ψ2,1,1, ψ1,2,1, ψ1,1,2} and Ẽ9 = span{ψ1,2,2, ψ2,1,2, ψ2,2,1},

respectively. The kernel of the action of Γ0 = Oh×Z2 on Ẽ6 is Γ′
0 = 〈(I3,−1)〉, and the kernel

of the action of Γ0 on Ẽ9 is Γ′
0 = 〈(−I3,−1)〉. In both cases,

Γ0/Γ
′
0 = 〈(R90, 1)Γ

′
0, (R120, 1)Γ

′
0, (R180, 1)Γ

′
0〉 ∼= Oh.

The reduced gradient g̃ : Ẽ → Ẽ in both cases has the equivariance indicated in the first
image of Figure 3. The EBL guarantees that under certain nondegeneracy conditions there is
a bifurcating branch tangent to each 1-dimensional fixed-point space in Ẽ. These fixed-point
subspaces intersect a cube in Ẽ at the center of a face, the center of an edge, or a vertex of
the cube. Thus, each EBL branch is made up of face, edge, or vertex solutions. The standard
choice of representative in each symmetry type is Γi ∈ Si for 0 ≤ i ≤ 98. The contour plots of
the bifurcating solutions in Figure 15 show the solution in the fixed-point subspace indicated
here:

face [Fix(Γ12, Ẽ6)] = [Fix(Γ14, Ẽ9)] = {(0, 0, a) | a ∈ R},
vertex [Fix(Γ22, Ẽ6)] = [Fix(Γ21, Ẽ9)] = {(a, a, a) | a ∈ R},
edge [Fix(Γ44, Ẽ6)] = {(−a, a, 0) | a ∈ R} is conjugate to

[Fix(Γ45, Ẽ9)] = {(a, a, 0) | a ∈ R}.
The symmetry type containing Γ12, denoted S12, has three elements, and the three conjugate
face directions in [Ẽ] are the coordinate axes. Similarly, [Γ22] = S22 has four elements,
corresponding to the four diagonals through vertices of the cube centered in R

3. The edge
solutions bifurcating at s = 6 have symmetry type [Γ44] = S44, which has six elements.

For the bifurcation at s = 6, the geometry in Ẽ6 is mirrored in the geometry of the
solutions. For example, the maximum u value for a vertex solution (type S22) lies on the line
from the origin to a vertex in Ω. Similarly, the maximum u value for an edge or face solution
is on the line from the origin to an edge or face, respectively. The three face directions in Ẽ
are ψ2,1,1, ψ1,2,1, and ψ1,1,2, which can be thought of as x, y, and z functions. Note that the
face solution in Figure 15 is approximately a multiple of ψ1,1,2.

The geometry in Ẽ9 for the bifurcation at s = 9 is the same. The geometry of the
bifurcating solutions, shown in Figure 16, is more subtle though. The face solutions have
symmetry type S14, and the z eigenfunction is ψ2,2,1. The face and edge solutions have a line
where two nodal planes intersect at right angles, and these lines intersect the midpoint of a
face and edge of Ω, respectively. However, the vertex solutions do not have an intersection of
nodal planes. Instead, the vertex solutions have an axis of 3-fold symmetry that intersects a
vertex in Ω.

The face solutions (type S14) that bifurcate at s = 9 have a bifurcation at s ≈ 6.60, as
seen in Figure 14. The secondary branch (type S51) itself has a bifurcation that creates a
tertiary branch with type S80. Solutions from these new branches are shown in Figure 16.
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Figure 17. Bifurcation with D6 symmetry in PDE (1) on the cube, at s = 11. The symmetry of g̃ on the
critical eigenspace Ẽ is shown in Figure 18. There are five (conjugacy classes of) branches that bifurcate at
s = 11. One branch in each class is shown in this bifurcation diagram, and the solid dots indicate the solutions
with the contour plots in Figure 19. (The upper solid dot is very close to a bifurcation point.) There is an
anomaly-breaking bifurcation at s ≈ 3.417, where mother and daughter both have symmetry type S17.

Figure 18. The critical eigenspace Ẽ at the bifurcation with D6 symmetry of the trivial solution at s = 11.
The first two figures are similar to those of Figure 3. The arrows show the symmetry of the reduced gradient
in Ẽ. This is a degenerate bifurcation since Ẽ is not an irreducible representation space. One of the diagonals
of the cube in Ẽ is an irreducible subspace. The orthogonal subspace, which intersects the cube in a hexagon as
shown in the third figure, is another irreducible subspace.

5.3. A degenerate bifurcation with D6 symmetry. Figure 17 shows the bifurcation dia-
gram of the primary branches that bifurcate from the fourth eigenvalue s = λ3,1,1 = 11. This
is a bifurcation with D6 symmetry; the action of D6 on the critical eigenspace Ẽ is shown
in Figure 18. Contour plots of the primary branches that bifurcate at s = 11 are shown in
Figure 19.

The critical eigenspace is the 3-dimensional space Ẽ = span{ψ3,1,1, ψ1,3,1, ψ1,1,3}. The
action of Γ0 on Ẽ satisfies

Γ0/Γ
′
0 = 〈(R90, 1)Γ

′
0, (R120, 1)Γ

′
0, (I3,−1)Γ′

0〉 ∼= D6.
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S17

S17

S2

S17

S18

Figure 19. Contour plots of solutions that bifurcate at s = 11. The order of the solutions is the same as
that in Figure 17, from top to bottom. The second solution branch intersects the fourth solution branch at an
anomaly-breaking bifurcation. As described in Figure 17, both have symmetry type S17. The fourth solution’s
contour plot shows a function which is the negative of the continuation of the second solution, due to the
ink-saving heuristic that replaced u by −u (see section 3.4).
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The action of Γ0/Γ
′
0 on Ẽ ∼= R

3 is isomorphic to the natural action of 〈M,R120,−I3〉 on R
3,

where

M =

⎡
⎣0 1 0
1 0 0
0 0 1

⎤
⎦

acts as a reflection. The matrix group 〈M,R120,−I3〉 is called D3d in the Schönflies notation
[24] for crystallographic point groups. This 3-dimensional representation of D6 is reducible,
and hence the bifurcation is degenerate.

We now describe the symmetries of the solutions shown in Figure 19. For convenience, we
will let Γi denote the symmetry of the solution shown with symmetry type Si.

There is a 1-dimensional fixed-point subspace of Ẽ for the only symmetry in S2 = {Γ2}:

Fix(Γ2, Ẽ) = span{ψ3,1,1 + ψ1,3,1 + ψ1,1,3}.

This space is the line through the front and back vertices shown as large dots in the first two
cubes of Figure 18. The EBL guarantees that there is a solution with this symmetry; one
such branch is shown in Figure 17. The other, negative, branch is not shown. Figure 19 shows
a contour map of this solution with Γ2

∼= Oh symmetry. The solution has one sign on the
shaved cube, as shown, but the sign is opposite at the center of the cube. The nodal surface
has cubic symmetry and is diffeomorphic to a sphere.

Figure 19 also shows one solution with symmetry Γ18 ∈ S18. The 1-dimensional fixed-point
subspace of Ẽ for this symmetry is

Fix(Γ18, Ẽ) = span{ψ3,1,1 − ψ1,3,1}.

This fixed-point subspace is the line through the midpoints of two opposite edges, depicted as
the thickest hexagon diagonal in the third cube of Figure 18. The two other diagonals of the
hexagon are conjugate fixed-point subspaces. The 180◦ rotation about each of these diagonals
is a symmetry of Ẽ. There is one conjugacy class of branches that bifurcates with symmetry
type S18 at s = 11. There are six branches in this conjugacy class, one of which is shown in
Figure 17.

Figure 19 shows three solutions with symmetry Γ17 ∈ S17. There can be more than
one conjugacy class of branches because the fixed-point subspace of the Γ17 action on Ẽ is
2-dimensional:

Fix(Γ17, Ẽ) = span{ψ3,1,1 + ψ1,3,1, ψ1,1,3}.
The intersection of this plane with a cube in Ẽ is indicated by dotted lines in Figure 18. This
fixed-point subspace includes the 1-dimensional intersection of the AIS A1,1,3 with Ẽ,

span{ψ1,1,3} ⊆ Fix(Γ17, Ẽ),

so there is a bifurcating solution branch, which is approximately a multiple of ψ1,1,3, in A1,1,3

(see (11)). It is clear from the contour map that the fourth branch from the top has solutions
that are in A1,1,3. Note that this branch undergoes an anomaly-breaking bifurcation at s ≈
3.417, with a daughter branch that has the same Γ17 symmetry.
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Figure 20. Partial bifurcation diagram for PDE (1) on the cube, showing the primary branch that bifurcates
at s = λ2,2,2 = 12 and the two bifurcations with Td symmetry that the primary branch undergoes at s ≈ 3.697
and s ≈ 8.107. There is no bifurcation where the branches appear to cross but no circle is drawn. The small
numerals indicate the MI of the trivial branch, the primary branch, and the solutions emanating from the
bifurcation with Td symmetry on the left. Contour plots of these solutions are shown in Figure 21.

5.4. A bifurcation with Td symmetry. Our C++ program can analyze the bifurcations of
nontrivial solutions and follow all of the daughter branches of most bifurcations. For example,
the primary branch that bifurcates at s = 12 undergoes three bifurcations in the interval
0 < s < 12, as shown in Figure 20. Two of these bifurcations, at s ≈ 3.687 and s ≈ 8.107, are
bifurcations with Td symmetry. The third bifurcation, at s ≈ 8.547, is a bifurcation with D6

symmetry to be discussed later.
We focus on the bifurcation with Td symmetry at s ≈ 3.687. The symmetry of the mother

solution u∗ is

Γ1 = 〈(R90,−1), (R120, 1), (R180,−1), (−I3,−1)〉,
that is, u∗ ∈ Fix(Γ1). For example, a rotation by 90◦ about the z-axis, coupled with a sign
change, leaves u∗ unchanged. The solution on the mother branch shown in Figure 21 looks
very much like ψ2,2,2. The critical eigenspace Ẽ has the ordered basis

(ψ̃2,1,1, ψ̃1,2,1, ψ̃1,1,2),

where ψ̃i,j,k is a function with the same symmetry as that of ψi,j,k. We cannot find u∗ or the
critical eigenfunctions exactly with pencil and paper, but we do know the symmetry exactly,
and our C++ program is able to use this information.

The action of Γ1 on Ẽ satisfies Γ′
1 = 〈(−I3,−1)〉, and the action of Γ1/Γ

′
1 on Ẽ is isomor-

phic to the natural action of

Td = 〈−R90, R120,−R180〉
on the coordinate space [Ẽ] = R

3.
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M : S1

V1: S22

V2: S22

F : S48

Figure 21. Contour plot of the mother solution M shown in Figure 20, along with two vertex solutions and
a face solution born at a bifurcation with Td symmetry. The names “vertex” and “face” indicate the position
in the critical eigenspace, shown in the middle image of Figure 3.

The symmetry of the reduced vector field g̃ on Ẽ for this bifurcation with Td symmetry
is shown in Figure 3. The daughter solutions at this bifurcation can be classified as face
solutions or vertex solutions. Each 1-dimensional fixed-point subspace of the Td action on Ẽ
is conjugate to one of these two:

face [Fix(Γ48, Ẽ)] = {(0, 0, a) | a ∈ R}, vertex [Fix(Γ22, Ẽ)] = {(a, a, a) | a ∈ R}.
Note that I3, the inversion through the origin, is not in Td. In particular, two antipodal vertex
solutions are not conjugate, and there is a transcritical branch of vertex solutions, as seen in
Figure 20, leading to the vertex solutions V1 and V2 seen in Figure 21. Note that V1 has two
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S98

Figure 22. Contour plot for a solution with trivial symmetry to PDE (1) on the cube, at s = 0. This
solution is a descendant of the mother branch with symmetry type S1 shown in Figures 20 and 21. The solution

shown is found by following the sequence of bifurcations S0
Z2−→ S1

D6−→ S37
D4−→ S91

Z2−→ S98.
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Figure 23. The lattice of isotropy subgroups for the 6-dimensional critical eigenspace Ẽ of the trivial
solution at s = 14. For clarity, we display a 3-element partition of the edge set of the Hasse diagram of the
lattice. The number at the left indicates the dimension dim(Fix(Γ, Ẽ)) of the fixed-point subspace for any Γ ∈ Si

at that height in the diagram.

white regions and two black regions on the surface of the cube, whereas V2 has one white
region and one black region.

Figure 20 shows that the vertex solution V2 is a daughter of both of the bifurcations with
Td symmetry on the primary branch that bifurcates at s = 12. The third bifurcation on
that branch, at s ≈ 8.547, is a generic bifurcation with D6 symmetry. The MI of the mother
branch changes from 11 to 9 as s decreases through that bifurcation. Unlike the degenerate
bifurcation with D6 symmetry that occurs at u = 0, s = 11, generic bifurcations with D6

symmetry are well known. Hence, we do not give the details of the bifurcation at s ≈ 8.547,
except to mention that one of the two branches created at this bifurcation has a granddaughter
with trivial symmetry, depicted in Figure 22.

5.5. A 6-dimensional critical eigenspace. Figures 23, 24, and 25 concern the bifurcation
of the trivial solution at s = λ1,2,3 = 12 + 22 + 32 = 14. The 6-dimensional critical eigenspace
is

Ẽ = span{ψ1,2,3, ψ1,3,2, ψ2,1,3, ψ2,3,1, ψ3,1,2, ψ3,2,1}.
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i 0 12 11 22 23 52 54 93 78 79 44 67
|Γi · u| 1 6 6 8 8 12 16 48 24 24 12 24
MI 11 12 14 14 12 15 17 16 14,15 13,16 12,13,14,15 13,14,15,17

Figure 24. Symmetry, multiplicity, and MI at s = s− = 14 − ε of the trivial solution and the bifurcating
primary solutions at s = 14. The solutions in a given column have symmetry type Si. The second row shows
the size of the group orbits, while the third row gives the MI of the solutions in each group orbit. The only local
solution at s = s+ = 14+ ε is the trivial solution, with MI = 17. Using these MI values, we can make an index
theory computation (15) to verify that the results are consistent with having obtained all solutions.

The action of Γ0 on Ẽ satisfies Γ′
0 = 〈(−I3,−1)〉 and Γ0/Γ

′
0 = Oh. The action of Γ0/Γ

′
0 on Ẽ

is isomorphic to the natural action of

〈R90 ⊕ (−R90), R120 ⊕R120, R180 ⊕ (−R180), (−I3)⊕ (−I3)〉
on the coordinate space [Ẽ] = R

6 with respect to the ordered basis

(ψ213 + ψ231, ψ321 + ψ123, ψ132 + ψ312, ψ213 − ψ231, ψ321 − ψ123, ψ132 − ψ312).

Writing the action in block diagonal form, one sees that the eigenspace Ẽ is the direct sum
of two irreducible spaces. The trivial subspace of Ẽ has isotropy S0, and S93 is the minimal
isotropy subgroup. Thus, [Fix(Γ0, Ẽ)] = {0} ⊆ R

6 and [Fix(Γ93, Ẽ)] = R
6. The remaining

symmetries in Figures 23 and 25 in our chosen coordinate space satisfy the following:

[Fix(Γ12, Ẽ)] = {(0, 0, a, 0, 0, 0) | a ∈ R}, [Fix(Γ11, Ẽ)] = {(0, 0, 0, 0, 0, a) | a ∈ R},
[Fix(Γ22, Ẽ)] = {(a, a, a, 0, 0, 0) | a ∈ R}, [Fix(Γ23, Ẽ)] = {(0, 0, 0, a, a, a) | a ∈ R},
[Fix(Γ52, Ẽ)] = {(0, a, 0, 0, b, 0) | a, b ∈ R}, [Fix(Γ54, Ẽ)] = {(a, a, a, b, b, b) | a, b ∈ R},
[Fix(Γ44, Ẽ)] = {(a, -a, 0, b, b, 0) | a, b ∈ R}, [Fix(Γ78, Ẽ)] = {(a, -a, b, c, -c, 0) | a, b, c ∈ R},
[Fix(Γ67, Ẽ)] = {(a, b, 0, c, d, 0) | a, b, c, d ∈ R}, [Fix(Γ79, Ẽ)] = {(a, a, 0, b, b, c) | a, b, c ∈ R}.

Figure 23 describes the lattice of isotropy subgroups of Ẽ. Each arrow Si → Sj indicates
that some isotropy subgroup in Sj is a subgroup of some isotropy subgroup in Si. The arrows
generate a partial ordering of the symmetry types. Note that the lattice of isotropy subgroups
is different from the bifurcation digraph, as explained in [16].

To simplify the visual representation, the lattice of symmetry types for the action of Oh

on two irreducible spaces whose direct sum is Ẽ is shown on the top row of Figure 23. Note
that the middle column is the same in each of the top row sublattices. As a result of the
presence of S44 in both sublattices, dim(Ẽ ∩ Fix(Γ44)) = 2, whereas dim(Ẽ ∩Fix(Γi)) = 1 for
i ∈ {11, 12, 22, 23}. Within these 1-dimensional spaces there is a pitchfork bifurcation to an
EBL branch, but the bifurcation to solutions with symmetry type S44 is more complicated.

It is remarkable that there is at least one solution branch bifurcating at s = 14 with each
of the symmetry types shown in Figure 23. There is even a solution with symmetry type
S93, the lowest symmetry present in Ẽ. The conjugacy class of this branch has a total of
48 branches. Figure 25 shows one solution in each of the nonconjugate primary branches that
bifurcate at the multiplicity-6 eigenvalue s = 14. Since each of the solutions in this figure is
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Figure 25. Contour plots for one solution on each of the 19 nonconjugate primary branches bifurcating at
s = 14. The solutions are listed with increasing MI within each symmetry type. The solutions are shown at
s = 11, except for S67 with MI 13 and S93, which are shown at s = 13.95 and s = 13.69, respectively. We do
this because these branches end at s ≈ 13.91 and s ≈ 13.38, respectively.
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odd about the center of the cube, that is, u(x, y, z) = −u(π − x, π − y, π − z), we show only
the front view of the contour plot.

The solution in Figure 25 with symmetry type S52 strongly resembles the eigenfunction
ψ1,2,3(x, y, z) = sin(x) sin(2y) sin(3z). An analysis of the “hidden symmetries” in this problem
[12] would explain why the solution with symmetry type S52 bifurcates, but it would not
explain all of the solutions in Figure 25. In the space of triply periodic functions on R

3, there
is a 12-dimensional irreducible space spanned by rotations of ψ1,2,3 and the similar functions
with cosines in place of sines.

Let X− and X+ be the sets of solutions for s = s− = 14 − ε and s = s+ = 14 + ε,
respectively, that are on branches bifurcating from (0, 14) ∈ H × R, together with solutions
on the mother branch for a sufficiently small positive ε. The set X− contains 345 solutions
falling into 20 group orbits with nontrivial representatives shown in Figure 25. Figure 24
shows multiplicity and MI information for X−. Since all the bifurcating branches curve to
the left, X+ contains only the trivial solution with MI(0, s+) = 17. Thus, one can verify that
the Poincaré–Hopf index theorem of [2] is satisfied since

(15)
∑

u∈X−
(−1)MI(u,s−) =

∑
i

∑
u∈X−/Γi

|Γi ·u|(−1)MI(u,s−) = −1 = (−1)17 =
∑

u∈X+

(−1)MI(u,s+).

This is consistent with our belief that the list of solutions in Figure 24 is comprehensive.

6. Conclusion. In this article we have extended the methods from [15] and [16]. In the
first paper, the symmetry group was relatively small, and a medium-sized grid was used to
produce a reasonable portion of the bifurcation diagram and a selection of contour plots for
a 2-dimensional semilinear elliptic PDE. In the second article, we completely automated
the symmetry analysis for investigating the rich symmetries of solutions to partial difference
equations (PdE) for many interesting low-order graphs. We have shown how to extend these
ideas to a 3-dimensional problem with a large symmetry group, namely the cube. The large
grid and many calculations required the use of a parallel programming environment. We
developed and employed our own library, MPQueue [18], to implement our branch-following
and branch switching algorithms using self-submitting parallel job queues and MPI. The
new results we have presented here use the symmetry analysis from a low-order graph with
the same symmetry group to generate the corresponding symmetry information for functions
discretized over the large-sized grid used in the PDE code. We could not have done this
without GAP; for the cube there are 99 symmetry types (and 323 symmetries or isotropy
subgroups) with 482 arrows between symmetry types. This symmetry information is essential
to the numerical results in several key ways. It allows for the efficient construction of block
diagonal Hessians, reducing the number of costly integrations required at each Newton step
in the presence of symmetry. It also allows us to search for only a single representative of
each novel solution type, rather than wasting computations on finding many equivalent copies.
By reducing the dimension of a search space, symmetry information increases our chance of
finding all expected solutions of a given symmetry type at each new bifurcation.

The Laplacian in PDE (1) can be replaced by different linear operators without requir-
ing major modifications. For example, we could compute stationary solutions to the Swift–
Hohenberg equation [21]. However, handling time dependence, including spatio-temporal
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symmetries of periodic solutions, would require a different approach. There are two fur-
ther limitations of our suite of programs. One is the requirement that the symmetry group
be discrete. The second limitation is that there is not a way to systematically handle AIS
(anomalous invariant subspaces).

A continuous symmetry group, for example the symmetry of PDE (1) with periodic bound-
ary conditions, forces zero eigenvalues of the Hessian matrix. The MI is not defined if an
eigenvalue of the Hessian is zero, and our C++ code cannot find the bifurcation points on a
branch. For a specific symmetry group this difficulty can be overcome by using a specialized
code. For example, the GNGA technique was used to find solutions to a PDE on the disk in
[23]. However, our GAP program cannot analyze continuous symmetry groups. The symme-
try types and bifurcations must be computed by hand, or with some other computer algebra
system besides GAP. The large number of symmetry types encountered for periodic boundary
conditions in PDE (1) on the cube makes human computation of the symmetry information
impractical.

The existence of AIS renders our bifurcation analysis incomplete, and many bifurcations
are considered degenerate ever though the structure of the problem makes the bifurcations
generic in some sense. For hidden symmetries the degeneracy is understood and could in
principle be used to supply invariant subspace and bifurcation information to the C++ code.
We have not attempted this, but rather focused on making the code robust in following
branches at degenerate bifurcations. We have investigated PDE (1) on the Sierpinski gasket,
where the critical eigenspaces can have extremely high dimensions due to AIS, whereas the
symmetry alone predicts that no critical eigenspace has dimension larger than two. We hope
that the use of groupoids to analyze local symmetries, as in [20], could allow a general theory
of AIS and make such problems tractable.

In summary, the entire suite of programs and new methods for efficiently implementing our
algorithms has allowed us to observe interesting bifurcation symmetries for PDE that we have
not seen published. Our procedure demonstrates a robustness for handling degenerate bifur-
cations, AIS, and high-dimensional or reducible critical eigenspaces. The new contour plots
required a number of ideas for efficiently and effectively conveying the necessary information
graphically. The size of the problem makes it impossible to present a visual representation
of the bifurcation digraph on a single page. We have constructed a companion website [17]
for navigating the digraph, and give examples here to aid the reader in understanding the
digraph and how to use it to interpret our numerical results.
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