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Abstract. We apply the Gradient-Newton-Galerkin-Algorithm (GNGA) of Neuberger & Swift
to find solutions to a semilinear elliptic Dirichlet problem on the region whose boundary is the
Koch snowflake. In a recent paper, we described an accurate and efficient method for generating a
basis of eigenfunctions of the Laplacian on this region. In that work, we used the symmetry of the
snowflake region to analyze and post-process the basis, rendering it suitable for input to the GNGA.
The GNGA uses Newton’s method on the eigenfunction expansion coefficients to find solutions to
the semilinear problem. This article introduces the bifurcation digraph, an extension of the lattice
of isotropy subgroups. For our example, the bifurcation digraph shows the 23 possible symmetry
types of solutions to the PDE and the 59 generic symmetry-breaking bifurcations among these
symmetry types. Our numerical code uses continuation methods, and follows branches created
at symmetry-breaking bifurcations, so the human user does not need to supply initial guesses for
Newton’s method. Starting from the known trivial solution, the code automatically finds at least one
solution with each of the symmetry types that we predict can exist. Such computationally intensive
investigations necessitated the writing of automated branch following code, whereby symmetry
information was used to reduce the number of computations per GNGA execution and to make
intelligent branch following decisions at bifurcation points.

1. Introduction.

We seek numerical solutions to the semilinear elliptic boundary value problem

∆u + fλ(u) = 0 in Ω

u = 0 on ∂Ω,(1)

where ∆ is the Laplacian operator, Ω ⊂ R2 is the region whose boundary ∂Ω is the Koch snowflake,
u : Ω → R is the unknown function, and fλ : R→ R is a one-parameter family of odd functions. For
convenience, we refer to Ω as the Koch snowflake region. This article is one of the first to consider
a nonlinear PDE on a region with fractal boundary. In this paper, we choose the nonlinearity to
be

fλ(u) = λu + u3,(2)

and treat λ ∈ R as the bifurcation parameter. When the parameter is fixed, we will sometimes use
f in place of fλ. Using this convention, note that λ = f ′(0).

This paper exploits the hexagonal symmetry of the Koch snowflake region, and the fact that f
is odd. Our nonlinear code would work with any region with hexagonal symmetry and any odd
‘superlinear’ function f (see [2]), and with minor modification for other classes of nonlinearities
as well. We chose to work with odd f primarily because of the rich symmetry structure. The
explicit shape of Ω represents a considerable technological challenge for the computation of the
eigenfunctions [11, 20], which are required as input to the nonlinear code.

It is well known that the eigenvalues of the Laplacian under this boundary condition satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,(3)
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and that the corresponding eigenfunctions

{ψj}j∈N(4)

are an orthogonal basis of both the Sobolev space H = H1,2
0 (Ω) and the larger Hilbert space

L2 = L2(Ω), with the inner products

〈u, v〉H =
∫

Ω
∇u · ∇v dx and 〈u, v〉2 =

∫

Ω
u v dx,

respectively. Using the Gradient-Newton-Galerkin-Algorithm (GNGA, see [19]) we seek approxi-
mate solutions u =

∑M
j=1 ajψj to (1) by applying Newton’s method to the eigenfunction expansion

coefficients of the gradient ∇J(u) of a nonlinear functional J whose critical points are the desired
solutions. The definition of J , the required variational equations, a description of the GNGA, and
a brief history of the problem are the subject of Section 2.

The GNGA requires as input a basis spanning a sufficiently large but finite dimensional subspace
BM = span{ψ1, . . . , ψM}, corresponding to the first M eigenvalues {λj}M

j=1. As described in [20],
a grid GN of N carefully placed points is used to approximate the eigenfunctions. These are the
same grid points used for the numerical integrations required by Newton’s method. Section 3 briefly
describes the process we use for generating the eigenfunctions.

Section 4 concerns the effects of symmetry on automated branch following. The symmetry the-
ory for linear operators found in [20] is summarized and then the extensions required for nonlinear
operators are described. Symmetry-breaking bifurcations are analyzed in a way that allows an
automated system to follow the branches created at the bifurcations. As we develop the theory, we
present specific examples applying the general theory to equation (1) on the snowflake region. In
particular, we find that there are 23 different symmetry types of solutions to (1), and 59 generic
symmetry-breaking bifurcations. The symmetry types and bifurcations among them are summa-
rized in a bifurcation digraph, which generalizes the well-known lattice of isotropy subgroups (see
[6]). The introduction of the bifurcation digraph is a central accomplishment of this paper.

Section 5 describes how understanding the symmetry allows remarkable increases in the efficiency
of the GNGA. Section 6 describes the automated branch following. We use repeated executions of
the GNGA or a slightly modified algorithm (parameter-modified GNGA) to follow solution branches
of (1, 2). The GNGA uses Newton’s method, which is known to work well if it has a good initial
approximation. The main shortcoming of Newton’s method is that is works poorly without a good
initial approximation. We avoid this problem by starting with the trivial solution (u = 0). The
symmetry-breaking bifurcations of the trivial solution are found by the algorithm and the primary
branches are started. The program then recursively follows the the branches by continuation
methods, and then follows the new branches created at symmetry-breaking bifurcations. To follow
an existing branch, we vary λ slightly between executions. To start new solution branches created
at bifurcation points, we treat λ as a variable and fix one of the null eigenfunctions of the Hessian
evaluated at the bifurcation point. The symmetry analysis tells which null eigenfunction to use.
In this way solutions with all 23 symmetry types are found automatically, starting from u = 0,
without having to guess any approximations for Newton’s method.

In our experiments, many bifurcation diagrams were generated by applying the techniques men-
tioned above. A selection of these diagrams are provided in Section 7, along with contour plots
of solutions to (1) corresponding to each of the 23 symmetry types predicted to exist. We include
evidence of the convergence of our algorithm as the number of modes M and grid points N increase.

Many extensions to our work are possible, including enforcing different boundary conditions on
the same region, solving similar semilinear equations on other fractal regions, and applying the
methodology to partial difference equations (PdE) on graphs [18]. Section 8 discusses some of
these possible extensions. In particular, we are in the process of re-writing the suite of programs.
We plan to be able to solve larger problems using a parallel environment. We will be able to solve
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problems with larger symmetry groups by automating the extensive group theoretic calculations.
This concluding section also has a discussion of the convergence of the GNGA.

2. GNGA.

We now present the variational machinery for studying (1) and follow with a brief description of
the general GNGA. Section 6 contains more details of the implementation of the algorithm for our
specific problem. Let Fλ(u) =

∫ u
0 fλ(s) ds for all u ∈ R define the primitive of fλ. We then define

the action functional J : R×H → R by

(5) J(λ, u) =
∫

Ω

{
1
2 |∇u|2 − Fλ(u)

}
dx.

We will sometimes use J : H → R to denote J(λ, ·). The class of nonlinearities f found (for
example) in [2, 3, 18] imply that J is well defined and of class C2 on H. The choice (2) we
make in this paper belongs to that class. It is well known that critical points of J are in fact
solutions to (1) (see for example [22]), and vice versa. The choice of H for the domain is crucial
to the analysis of the PDE (see [2, 17], and references therein), as well as for understanding the
theoretical basis of effective steepest descent algorithms (see [4, 15, 16], for example). We will work
in the subspace BM = span{ψ1, . . . , ψM}, where the twice continuously differentiable eigenfunctions
{ψj} (4) are normalized in L2, and in the corresponding coefficient space, where u ∈ BM if and
only if u =

∑M
j=1 ajψj for some coefficient vector a ∈ RM . Using the corresponding eigenvalues (3)

and integrating by parts, the quantities of interest are

(6) gj = J ′(u)(ψj) =
∫

Ω
{∇u · ∇ψj − f(u) ψj} = ajλj −

∫

Ω
f(u) ψj

and

(7) hjk = J ′′(u)(ψj , ψk) =
∫

Ω
{∇ψj · ∇ψk − f ′(u) ψj ψk} = λjδjk −

∫

Ω
f ′(u) ψj ψk,

where δjk is the Kronecker delta function. Note that there is no need for numerical differentiation
when forming gradient and Hessian coefficient vectors and matrices in implementing Algorithm 2.1;
this information is encoded in the eigenfunctions.

The vector g ∈ RM and the M×M matrix h represent suitable projections of the L2 gradient and
Hessian of J , restricted to the subspace BM , where all such quantities are defined. For example,
for u =

∑M
j=1 ajψj , v =

∑M
j=1 bjψj , and w =

∑M
j=1 cjψj , we have:

PBM
∇2J(u) =

M∑

j=1

gjψj , J ′(u)(v) = g · b, and J ′′(u)(v, w) = hb · c = b · hc.

We can identify g with the approximation PBM
∇2J(u) of ∇2J(u) = ∆u + f(u), which is defined

for u ∈ BM . The solution χ to the M -dimensional linear system hχ = g is then identified with the
(suitably projected) search direction (D2

2J(u))−1∇2J(u), which is not only defined for u ∈ BM , but
is there equal to (D2

HJ(u))−1∇HJ(u). We use the least squares solution of hχ = g. In practice,
the algorithm works even near bifurcation points where the Hessian is not invertible.

The heart of our code is Newton’s method in the space of eigenfunction coefficients:

Algorithm 2.1. (GNGA)
(1) Choose initial coefficients a = {aj}M

j=1, and set u =
∑

ajψj.
(2) Loop

(a) Calculate the gradient vector g = {J ′(u)(ψj)}M
j=1 from equation (6).

(b) Calculate the Hessian matrix h = {J ′′(u)(ψj , ψk)}M
j, k=1 from equation (7).

(c) Exit loop if ||g|| is sufficiently small.
(d) Solve hχ = g for the Newton search direction χ ∈ RM.
(e) Replace a ← a− χ and update u =

∑
ajψj.
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(3) Calculate sig(h) and J for the approximate solution.

If Newton’s method converges then we expect that u approximates a solution to the PDE (1),
provided M is sufficiently large and the eigenfunctions and numerical integrations are sufficiently
accurate. See Section 8.

Our estimate for the Morse index (MI) of the critical point of J is the signature of h, denoted
sig(h), which is defined as the number of negative eigenvalues of h. This measures the number of
linearly independent directions away from u in which J decreases quadratically.

The basic Algorithm 2.1 is modified to take advantage of the symmetry of our problem. The
M integrations required in step (a) and the M(M + 1)/2 integrations in step (b) are reduced to
smaller numbers if the initial guess has nontrivial symmetry.

We often use a “parameter-modified” version of the GNGA (pmGNGA). In this modification, λ
is treated as an unknown variable and one of the M coefficients ak is fixed. Along a given branch,
symmetry generally forces many coefficients to be zero. When a bifurcation point is located by
observing a change in MI, we can predict the symmetry of the bifurcating branches using the
symmetry of the null eigenfunctions of the Hessian. By forcing a small nonzero component in the
direction of a null eigenfunction (orthogonal to the old branch’s smaller invariant subspace), we can
assure that the pmGNGA will not converge to a solution lying on the old branch. Another benefit
of the pmGNGA is that it can handle a curve bifurcating to the right as well as one bifurcating
to the left. In our system, the branches that bifurcate to the right have saddle node bifurcations
where they turn around and go to the left. The pmGNGA can follow such branches while the
normal GNGA cannot.

The implementation of pmGNGA is not difficult. The M equations are still

gi = J ′(u)(ψi) = 0,

but the M unknowns are
ã = (a1, . . . , ak−1, λ, ak+1, . . . , aM ),

and the value of one coefficient, ak, is fixed. Consequently, we replace the Hessian matrix h with a
new matrix h̃ where the k-th column is set to ∂gi/∂λ = −ai:

h̃ij =
{

hij if j 6= k
−ai if j = k

.

The search direction χ̃ is the solution to the system h̃χ̃ = g. The pmGNGA step is

ã ← ã− χ̃,

and then u and λ are updated. After Newton’s method converges, the k-th column of the original
hij is calculated and the MI of the solution, sig(h), is computed.

We conclude this section with a very brief history of the analytical and numerical aspects of the
research into (1) given our type of nonlinearity f . Our introduction to this general subject was [2],
where a sign-changing existence result was proven. This theorem is extended in [3]; we indicate
briefly in Section 7 where this so-called CCN solution can be found on our bifurcation diagrams.
The GNGA was developed in [19], wherein a much more detailed description of the variational
structure and numerical implementation can be found. The computational efforts related to this
current project are somewhat more sophisticated. The more important aspects of our improvements
are explained in Sections 4 and 6. This article is the second of our published works concerning
GNGA for general regions; see [8] where the region is a Bunimovich stadium. The article [4] was
our first success in using symmetry to find higher MI solutions. The details concerning the grid,
basis generation, and subsequent symmetry analysis for the snowflake are in [20]. The article [17]
provides a historical overview of the authors’ experimental results using variants of the Mountain
Pass Algorithm (MPA, MMPA, HLA) and the GNGA, as well as recent analytical results and a
list of open problems; the references found therein are extensive.
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Figure 1. The Koch snowflake ∂Ω with N = 13 labelled grid points {xi}13
i=1 at

level ` = 2. At this level, the grid used by [11] consists of the NLNR(2) = 37 large
and small points inside the snowflake, along with 48 small points on ∂Ω. The points
outside of the snowflake are ghost points we use to enforce the boundary conditions;
these ghost points are not used by our nonlinear code.

` 1 2 3 4 5 6
N 1 13 133 1261 11605 105469

Table 1. The number N of interior grid points as a function of the level `. The
spacing between grid points is h = hNSS(`) = 2/3`. We typically use level ` = 5 in
our nonlinear experiments.

3. The Basis of Eigenfunctions.

In [20], we describe theoretical and computational results that lead to the generation of a basis
of eigenfunctions solving

(8) ∆u + λu = 0 in Ω, u = 0 on ∂Ω.

That paper details the grid technique and symmetry analysis that accompanied the effort; we briefly
summarize those results in this section.

The Koch snowflake is a well known fractal, with Hausdorff dimension log3 4. Following Lapidus,
Neuberger, Renka, and Griffith [11], we take our snowflake to be inscribed in a circle of radius

√
3

3
centered about the origin. With this choice, the polygonal approximations used in the fractal
construction have side length that are powers of 1/3. We use a triangular grid GN of N points to
approximate the snowflake region. Then, we identify u : GN → R with u ∈ RN , that is,

(9) u(xi) = ui

at grid points xi ∈ GN . Figure 1 depicts a low level grid used in [20] to compute eigenfunctions;
we use this same grid for our nonlinear experiments. The number of grid points on other levels are
in Table 1.

Our method of imposing the zero-Dirichlet boundary conditions can be summarized as

−∆u(x) ≈ 2
3h2

((12− number of interior neighbors)u(x)−
∑

{interior neighbor values of u}).
(10)

Using the differencing scheme in (10) and the grid depicted in Figure 1, we computed [20]
eigenvalues and eigenfunctions for (8) using ARPACK. Table 2 lists approximations of the first



6 JOHN M. NEUBERGER, NÁNDOR SIEBEN, AND JAMES W. SWIFT

k 1 2 3 4 5 6 7 8 9 10
λk 39.4 97.4 97.4 165.4 165.4 190.4 208.6 272.4 272.4 312.4

Table 2. Approximate values for the first ten eigenvalues to the Dirichlet problem.
For more values with greater precision see [20].

ten eigenvalues; these values are primary bifurcation points. The ARPACK is based upon an
algorithmic variant of the Arnoldi process called the Implicitly Restarted Arnoldi Method (see
[12]) and is ideally suited for finding the eigen-pairs of the large sparse matrices associated with
the discretization of the Laplacian.

4. Symmetry: The Lattice of Isotropy Subgroups and The Bifurcation Digraph.

This section describes equivariant bifurcation theory (see, for example [6] or [7]) as it applies
to the branching of solutions to equation (1). We are able to describe the expected symmetry
types of solutions to (1), as traditionally arranged in a lattice of isotropy subgroups. We introduce
the bifurcation digraph, essentially a refinement of the lattice, which shows every possible generic
bifurcation from one symmetry type to another as a directed edge which is labelled with information
about the bifurcation. This digraph is of interest in its own right and summarizes the essential
information required by our automated branch following code. In this project, GAP (Groups,
Algorithms, and Programming, see [5]) was used to verify our symmetry analysis; in our continuing
projects GAP is a necessary tool when the symmetry calculations are too complicated to be done
by hand. Matthews [14] has used GAP to do similar calculations. We apply this methodology to
the snowflake domain being considered in this paper. The analysis shows that solutions fall into 23
symmetry types, and that there are 59 types of generic symmetry breaking bifurcations.

Group Actions and the Lattice of Isotropy Subgroups. Let Γ be a compact Lie group and
V be a real vector space. A representation of Γ is a homomorphism α : Γ → GL(V ). Where
convenient, we identify GL(V ) with the set of invertible matrices with real coefficients. Every
representation α corresponds to a unique group action of Γ on V by the rule γ · v := α(γ)(v) for all
γ ∈ Γ and v ∈ V . We will usually use the action rather than the representation. The group orbit
of v is Γ · v = {γ · v | γ ∈ Γ}.
Example 4.1. The standard action of the dihedral group

D6 := 〈ρ, σ | ρ6 = σ2 = 1, ρσ = σρ5〉
on the plane is

ρ · (x, y) =
(

1
2x +

√
3

2 y,−
√

3
2 x + 1

2y
)

σ · (x, y) = (−x, y)

τ · (x, y) = (x,−y).

(11)

In this action ρ is a rotation by 60◦, σ is a reflection across the y-axis, and τ is a reflection across
the x-axis. While the group is generated by ρ and σ, we have defined τ = ρ3σ since the reflection
across the x-axis is so important. Note that στ = τσ = ρ3. We will denote subgroups of D6 by
listing the generators. For example 〈ρ2, τ〉 = {1, ρ2, ρ4, τ, ρ2τ, ρ4τ} ∼= D3.

The symmetry group of the Koch Snowflake region Ω is D6. The standard D6 group action of
(11) is not the only action we consider. For a function u ∈ L2(Ω) and group element γ ∈ D6, we
define (γ · u)(x) = u(γ−1 · x). In this paper, the vectors ui = u(xi), for a given grid GN = {xi}N

i=1,
are discrete approximations of functions on Ω. The D6 group action on ui ∈ RN is a permutation
of the components: (γ · u)i = u(γ−1 · xi). Given a function u ∈ L2(Ω) or RN , the group orbit D6 · u
consists of functions obtained from u by a reflection or rotation.
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Example 4.2. The group D6 × Z2, where Z2 = {1,−1}, acts on L2(Ω) in a natural way. For all
(γ, z) ∈ D6 × Z2, define

(γ, z) · u = z(γ · u).
We will denote (γ, 1) ∈ D6 × Z2 by γ and (γ,−1) ∈ D6 × Z2 by −γ. With this natural notation
(−γ) · u = −(γ · u), which we call simply −γ · u.

Let us recall some facts about group actions, following [6]. The isotropy subgroup or stabilizer of
v ∈ V in Γ is

Stab(v, Γ) := {γ ∈ Γ | γ · v = v}.
Other notations for Stab(v, Γ) are Γv. The isotropy subgroup of v is often called the little group of v.
The Γ is necessary when several groups act on the same space. If the group is understood, we may
simply write Stab(v) in place of Stab(v, Γ). The isotropy subgroup measures how much symmetry
v has. The stabilizer of a subset W ⊆ V in Γ is then defined as Stab(W,Γ) := {γ ∈ Γ | γ ·W = W}.
This must be distinguished from the point stabilizer of a subset

pStab(W,Γ) := {γ ∈ Γ | γ · v = v for all v ∈ W} =
⋂
{Stab(v, Γ) | v ∈ W}.

Another commonly used notation is ΓW for the stabilizer and Γ(W ) for the point stabilizer. Note
that pStab(W,Γ) is always normal in Stab(W,Γ), and the effective symmetry group acting on W is
Stab(W,Γ)/pStab(W,Γ), which acts faithfully on W .

If Σ is a subgroup of Γ then the fixed point subspace of Σ in V is

Fix(Σ, V ) := {v ∈ V | γ · v = v for all γ ∈ Σ}.
Another notation for the fixed point subspace is VΣ. Often, we will drop the V when the space on
which Γ acts is clear.

An isotropy subgroup of the Γ action on V is the stabilizer of some point v ∈ V . For some group
actions, not every subgroup of Γ is an isotropy subgroup. A necessary and sufficient condition for
Σ to be an isotropy subgroup of a Γ action on V is that Σ = pStab(Fix(Σ, V ), Γ), that is

(12) Σ is an isotropy subgroup ⇐⇒ Σ = pStab(Fix(Σ)).

Example 4.3. Consider the D6 action on the plane R2 described in Example 4.1. Then
Stab((0, 1),D6) = {1, σ}, Stab(Ω,D6) = D6, and pStab(Ω,D6) = {1}. The subgroup 〈ρ〉 is not an
isotropy subgroup of this group action because Fix(〈ρ〉,R2) = {(0, 0)}, but pStab((0, 0),D6) = D6.
Thus, there is no point in the plane whose isotropy subgroup is 〈ρ〉.

Now consider the D6 action on the function space L2(Ω). Start with a function u∗ that is zero
everywhere except for a small region, and suppose that the region is distinct from each of its
nontrivial images under the D6 action. Then for any subgroup Σ ≤ D6, the average of the function
u∗ over Σ, defined as

(13) PΣ(u∗) =
1
|Σ|

∑

γ∈Σ

γ · u∗

has isotropy subgroup Σ. Therefore every subgroup of the D6 action on L2(Ω) is an isotropy
subgroup. The average over the group is an example of a Haar operator, and PΣ : V → Fix(Σ, V )
is an orthogonal projection operator [30].

Similarly, every subgroup of D6 is an isotropy subgroup of the D6 action on R133, the space of
functions on our grid at level ` = 3. This follows from averaging the function that is 1 at a generic
lattice point, and 0 elsewhere. (A generic point is one whose isotropy subgroup is trivial.) Note
that the grid at level ` = 2, shown in Figure 1, does not have a generic lattice point. For the action
of D6 on R13, the space of functions on G13, averaging any function over 〈ρ〉 gives a function with
isotropy subgroup D6. Hence, 〈ρ〉 is not an isotropy subgroup of the D6 action on R13.

While the level 3 grid is the smallest of our grids shown in Table 1 with a generic lattice point,
we can get by with fewer points. Start with any generic point x1 ∈ Ω. Then D6 acts on the space
of functions on the 12 points {γ · x1 | γ ∈ D6}. This D6 action on R12 has the same structure of
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isotropy subgroups as the D6 action on L2(Ω), and is the D6 action used in our GAP calculations.
The corresponding 12-dimensional representation is the well-known regular representation of D6

(see [23, 25, 28]).

The symmetry of functions is described by two related concepts. A function q : V → R is
Γ-invariant if q(γ · v) = q(v) for all γ ∈ Γ and all v ∈ V . Similarly, an operator T : V → V is
Γ-equivariant if T (γ · v) = γ · T (v) for all γ ∈ Γ and all v ∈ V .

Example 4.4. The energy functional J defined in equation (5) is D6 × Z2-invariant. The nonlinear
PDE (1) can be written as (∆ + f)(u) = 0, where ∆ + f is a D6×Z2-equivariant operator. (There
are subtleties concerning the domain and range of ∆. See [4] for a careful treatment of the function
spaces.) In particular, ∆ + f is D6-equivariant because the snowflake region Ω has D6 symmetry,
and (∆ + f)(−u) = −(∆ + f)(u), since f is odd. As a consequence, if u is a solution to (1), then
so is every element in its group orbit (D6 × Z2) · u.

The isotropy subgroups and fixed point subspaces are important because of the following simple
yet powerful results. See [6] or [7].

Proposition 4.5. Suppose Γ acts linearly on V , T : V → V is Γ-equivariant and Σ is an isotropy
subgroup of Γ.

(a) If v ∈ Fix(Σ) then T (v) ∈ Fix(Σ). Thus, T |Fix(Σ) : Fix(Σ) → Fix(Σ) is defined.
(b) Stab(Fix(Σ)) = NΓ(Σ), the normalizer of Σ in Γ.
(c) T |Fix(Σ) is NΓ(Σ)-equivariant.
(d) T |Fix(Σ) is NΓ(Σ)/Σ-equivariant, and NΓ(Σ)/Σ acts faithfully on Fix(Σ).

If Σ is a subgroup of Γ, the normalizer of Σ in Γ is defined to be NΓ(Σ) := {γ ∈ Γ | γΣ = Σγ},
which is the largest subgroup of Γ for which Σ is a normal subgroup. The presence of the normalizer
in Proposition 4.5(b) is interesting, since the normalizer is a property of the abstract groups, and
is independent of the group action.

Example 4.6. As a consequence of Proposition 4.5, we can solve the PDE (1), written as (∆+f)(u) =
0, by restricting u to functions in Fix(Σ, L2(Ω)). This leads to a simpler problem since the function
space Fix(Σ, L2(Ω)) is simpler than L2(Ω). An example of this is in Costa, Ding, and Neuberger
[4]. The techniques of that paper, applied to our problem, would find sign-changing solutions with
Morse index 2 within the space Fix(D6, L

2(Ω)). This space consists of all functions which are
unchanged under all of the rotations and reflections of the snowflake region.

Proposition (4.5) also applies to the GNGA, since the Newton’s method iteration mapping is
D6 × Z2-equivariant. If the initial guess is in a particular fixed point subspace, all the iterates will
be in that fixed point subspace. This understanding can be used to speed numerical calculations,
as described in Section 5.

Two subgroups Σ1, Σ2 of Γ are conjugate (Σ1 ∼ Σ2) if Σ1 = γΣ2γ
−1 for some γ ∈ Γ. We define

the symmetry type of v ∈ V for the Γ action to be the conjugacy class of Stab(v, Γ). Note that
Stab(γ ·v) = γ Stab(v)γ−1. Thus, every element of a group orbit Γ ·v has the same symmetry type.

Example 4.7. The symmetry type of a solution u to our PDE (1) for the D6 × Z2 action is the
conjugacy class of Stab(u,D6 × Z2); we refer to this as the symmetry type of u, without reference
to D6×Z2. The discussion of D6 acting on L2(Ω) in Example 4.3 can easily be extended to D6×Z2

acting on L2(Ω). Note that if −1 ∈ Σ ≤ D6×Z2, then the average of any function over Σ is u = 0.
Therefore the only isotropy subgroup of D6×Z2 which contains −1 is D6 ×Z2 itself. On the other
hand, the argument in Example 4.3 shows that any subgroup of D6 × Z2 which does not contain
−1 is an isotropy subgroup. Therefore, Σ ≤ D6 × Z2 is an isotropy subgroup of this group action
if and only if Σ = D6 × Z2 or −1 /∈ Σ.

This result allowed us to compute the isotropy subgroups by hand. We verified our calculations
using GAP and the characterization in Equation (12) for the action of D6×Z2 on R12 described in
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Example 4.3. There are exactly 23 conjugacy classes of isotropy subgroups for the D6 × Z2 action
on L2(Ω). Thus, a solution to the PDE (1) has one of 23 different symmetry types.

Let S = {Si} denote the set of all symmetry types of a Γ action on V . The set S has a natural
partial order, with Si ≤ Sj if there exits Σi ∈ Si and Σj ∈ Sj such that Σi ≤ Σj . The partially
ordered set (S,≤) is called the lattice of isotropy subgroups of the Γ action on V [6]. The diagram
of the lattice of isotropy subgroups is a directed graph with vertices Si and arrows Si ← Sj if, and
only if, Si � Sj and there is no symmetry type between Si and Sj . The diagram of the isotropy
lattice of the D6 × Z2 action on L2(Ω) is shown in condensed form in Figure 2.

Irreducible Representations and the Isotypic Decomposition. In order to understand the
symmetry-breaking bifurcations we need to first understand irreducible representations and the
isotypic decomposition of a group action. The information about the irreducible representations is
summarized in character tables [23, 25, 26, 28]. For our purposes, irreducible representations over
the field R are required, see [6, 7]. The irreducible representations of Γ are homomorphisms from Γ
to the space of dj × dj real matrices: γ 7→ α(j)(γ), such that no proper subspace of Rdj is invariant
under α(j)(γ) for all γ ∈ Γ. The dimension of the irreducible representation α(j) is dj . We call
W ⊆ V a Γ-invariant subspace of V if Γ ·W ⊆ W . An irreducible subspace of V is an invariant
subspace with no proper invariant subspaces. Every irreducible subspace of the Γ action on V
corresponds to a unique (up to similarity) irreducible representation of Γ. The dimension of the
irreducible subspace is the same as the dimension of the corresponding irreducible representation.

For each irreducible representation α(j) of Γ, the isotypic component of V for the Γ action,
denoted by V

(j)
Γ , is defined to be the direct sum of all of the irreducible subspaces corresponding

to the fixed α(j) [6, 7, 20]. The isotypic decomposition of V is then

(14) V =
⊕

j

V
(j)
Γ .

Some of the isotypic components might be the single point at the origin. These can be left out
of the isotypic decomposition. A description of the isotypic components in terms of projection
operators is given in [20].

For any group Γ, we denote the trivial representation by α(1). That is α(1)(γ) = 1 for all γ ∈ Γ.
Thus, if Γ is an isotropy subgroup of a Γ0 action on V , then

V
(1)
Γ = Fix(Γ, V ).

Example 4.8. Let us consider the D6 = 〈ρ, σ, τ〉 action on L2(Ω). We need to consider the six
irreducible representations of D6, which are listed in [20], to find the isotypic decomposition of
L2(Ω). Since these isotypic components are central to our problem, we drop the D6 and define
V (j) := V

(j)
D6

, j = 1, 2, . . . , 6 as follows:

V (1) = {u ∈ L2(Ω) | ρ · u = u, σ · u = u, τ · u = u}(15)

V (2) = {u ∈ L2(Ω) | ρ · u = u, σ · u = −u, τ · u = −u}
V (3) = {u ∈ L2(Ω) | ρ · u = −u, σ · u = u, τ · u = −u}
V (4) = {u ∈ L2(Ω) | ρ · u = −u, σ · u = −u, τ · u = u}
V (5) = {u ∈ L2(Ω) | ρ3 · u = u, u + ρ2 · u + ρ4 · u = 0}
V (6) = {u ∈ L2(Ω) | ρ3 · u = −u, u + ρ2 · u + ρ4 · u = 0}.
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Γ0 = 〈ρ, σ, τ,−1〉 = D6 × Z2

4

²²

Γ1 = 〈ρ, σ, τ〉 = D6

Γ2 = 〈ρ,−σ,−τ〉
Γ3 = 〈−ρ, σ,−τ〉
Γ4 = 〈−ρ,−σ, τ〉

2

2 ²²

2
%%KKKKKKKKKKKKKKKKKKKKKKK

yysssssssssssssssssssssss

Γ5 = 〈σ, τ〉
Γ6 = 〈−σ,−τ〉
Γ7 = 〈σ,−τ〉
Γ8 = 〈−σ, τ〉

2

2 ²²

2
%%KKKKKKKKKKKKKKKKKKKKKKKKKKK

Γ9 = 〈ρ2, σ〉
Γ10 = 〈ρ2, τ〉
Γ11 = 〈ρ2,−τ〉
Γ12 = 〈ρ2,−σ〉

4 %%KKKKKKKKKKKKKKKKKKKKKKKKKKKKK

yysssssssssssssssssssssssssss

Γ13 = 〈ρ〉
Γ14 = 〈−ρ〉

2
²²

yysssssssssssssssssssssssssss

Γ15 = 〈σ〉
Γ16 = 〈τ〉
Γ17 = 〈−τ〉
Γ18 = 〈−σ〉

4 ((PPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Γ19 = 〈ρ3〉
Γ20 = 〈−ρ3〉

2 ²²

Γ21 = 〈ρ2〉

wwoooooooooooooooooooooooooooooo

Γ22 = {1}

Figure 2. The condensed diagram of the isotropy lattice (see [6]) for the D6 × Z2

action on L2(Ω). The vertices of this diagram are the symmetry types (equivalence
classes of isotropy subgroups). We follow the convention [6, 7] that one element Γi

of each symmetry type Si = [Γi] is listed. The representatives Γi have the property
that Γi ≤ Γj iff Si ≤ Sj . Contour plots of solutions to PDE (1) with each of the
23 symmetry types are given in Figures 13 and 14. The diagram of the isotropy
lattice is condensed as in [26]. The small numbers on the edges tell the number of
connections emanating from each symmetry type in a box. A missing small number
means 1. For example, the two arrows representing [Γ21] ≤ [Γ13] and [Γ21] ≤ [Γ14]
in the full diagram are collapsed to a single arrow in the condensed diagram. For
Γ0 through Γ4, the τ generator is redundant since τ = ρ3σ, but its presence makes
the subgroups manifest. For example, Γ2 = 〈ρ,−σ,−τ〉 = 〈ρ,−σ〉, but the three
generators make it clear that 〈−σ,−τ〉 ≤ 〈ρ,−σ,−τ〉.
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The last two components are subdivided in terms of a “canonical basis” as V (5) = V
(5)
1 ⊕ V

(5)
2 and

V (6) = V
(6)
1 ⊕ V

(6)
2 , where

V
(5)
1 = {u ∈ V (5) | σ · u = u, τ · u = u}(16)

V
(5)
2 = {u ∈ V (5) | σ · u = −u, τ · u = −u}

V
(6)
1 = {u ∈ V (6) | σ · u = u, τ · u = −u}

V
(6)
2 = {u ∈ V (6) | σ · u = −u, τ · u = u}.

As described in [20], the canonical basis corresponds to a particular choice of the irreducible rep-
resentation α(5) or α(6) within its equivalence class.

Example 4.9. Now, let us consider the isotypic decomposition of the Γ5 = 〈σ, τ〉 ∼= Z2 × Z2 action
on L2(Ω). There are 4 irreducible representations of Z2×Z2, each of which is one-dimensional. The
trivial representation is α(1), and the others are defined by α(2)(σ) = −1, α(2)(τ) = −1, α(3)(σ) = 1,
α(3)(τ) = −1, α(4)(σ) = −1, and α(4)(τ) = 1. The four isotypic components of L2(Ω) for the Γ5

action, written in terms of the spaces defined in (15) and (16), are

V
(1)
〈σ,τ〉 = {u ∈ L2(Ω) | σ · u = u, τ · u = u} = V (1) ⊕ V

(5)
1

V
(2)
〈σ,τ〉 = {u ∈ L2(Ω) | σ · u = −u, τ · u = −u} = V (2) ⊕ V

(5)
2

V
(3)
〈σ,τ〉 = {u ∈ L2(Ω) | σ · u = u, τ · u = −u} = V (3) ⊕ V

(6)
1

V
(4)
〈σ,τ〉 = {u ∈ L2(Ω) | σ · u = −u, τ · u = u} = V (4) ⊕ V

(6)
2 .

Note that the canonical basis introduced in [20] is needed for an efficient description of the isotypic
decomposition. This is one example of how the canonical basis is the best basis of eigenfunctions
to use with the GNGA.

Example 4.10. The isotypic decomposition of Γ13 = 〈ρ〉 ∼= Z6 illustrates some features of real rep-
resentation theory. The irreducible representations of Z6 over C are all one-dimensional. They are
α(j)(ρ) = (eiπ/3)j−1 for j = 1, 2, . . . , 6. Over the field R, however, the one-dimensional irreducible
representations of Z6 are given by

(17) α(1)(ρ) = 1, α(2)(ρ) = −1,

and the two-dimensional irreducible representations of Z6, up to similarity transformations, are
given by

(18) α(3)(ρ) =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
, α(4)(ρ) =

(
1
2

√
3

2

−
√

3
2

1
2

)
.

Note that α(3)(ρ) is matrix for a rotation by 120◦ and α(4)(ρ) is a 60◦ rotation matrix.
An irreducible representation over R is called absolutely irreducible if it is also irreducible over C.

For example, all of the irreducible representations of D6 listed in [20] are absolutely irreducible, as
are the one-dimensional irreducible representations of Z6 in equation (17). On the other hand, the
two-dimensional irreducible representations of Z6 in equation (18) are not absolutely irreducible.

The four isotypic components of the 〈ρ〉 action on L2(Ω) are

V
(1)
〈ρ〉 = {u ∈ L2(Ω) | ρ · u = u} = V (1) ⊕ V (2)

V
(2)
〈ρ〉 = {u ∈ L2(Ω) | ρ · u = −u} = V (3) ⊕ V (4)

V
(3)
〈ρ〉 = V (5), and V

(4)
〈ρ〉 = V (6).
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If we had used the complex irreducible representations, some of the corresponding isotypic compo-
nents would contain complex-valued functions. It is more natural to use real irreducible representa-
tions, and consider only real-valued functions. The price we pay is that most of the representation
theory found in books, and built into GAP, is done for complex irreducible representations.

As illustrated by these examples, the isotypic decomposition for each of the 23 isotropy subgroups
of D6 × Z2 can be written as a direct sum of some subset of the eight spaces V (j), for j = 1, . . . , 4,
and V

(j)
1 and V

(j)
2 for j = 5, 6 defined in (15) and (16). Example 4.9 shows that the subdivision of

V (5) and V (6), described in (16), is needed. This is the reason why we prefer the canonical basis
described in [20], which was not used in [11]. Each of the eigenfunctions is an element of one of
these eight spaces, and this information is known by the C++ program. The D6 × Z2 action on
the Galerkin space BM = {∑M

i=1 aiψi} ∼= RM is quite simple. For example,

V
(5)
1 ∩BM =

{
M∑

i=1

aiψi | ai = 0 if ψi /∈ V
(5)
1

}
.

Thus, the C++ program can easily check if a function is in any of the isotypic components V
(j)
Γi

of
BM for each of the Γi, i = 0, 1, . . . , 22, actions.

Symmetry-Breaking Bifurcations. The fact that there are 23 possible symmetry types of
solutions to the PDE (1) begs the question, do solutions with each of these symmetry types exist?
Clearly the trivial solution u = 0, with symmetry type S0, exits. Our procedure for finding
approximate solutions with each of these symmetry types is to start with the trivial solution and
recursively follow solution branches created at symmetry-breaking bifurcations.

Let us start by abstracting the PDE defined by (1), which depends on the real parameter λ. Let
V be an inner product space and J : R×V → R be a family of Γ0−invariant functions that depends
on a parameter λ. That is, J(λ, γ · u) = J(λ, u) for all γ ∈ Γ0 and u ∈ V . It is understood that Γ0

is the largest known group for which J is invariant; of course J is also invariant under any subgroup
of Γ0. We will use Γ, or Γi, to refer to an isotropy subgroup of the “full” group Γ0. Consider the
steady-state bifurcation problem g(λ, u) = 0, where g(λ, u) = ∇J(λ, u). Throughout this paper,
the gradient ∇ acts on the u component. Note that g : R× V → V is a family of Γ0−equivariant
gradient operators on V . That is, g(λ, γ · u) = γ · g(λ, u). In our PDE, we can take g as in (6),
or consider (possibly restricted and/or projected) gradients of the functional J from (5) on BM ,
H, or other subspaces of L2 (see Section 2). We can even think of the underlying vector space
as the collection of functions on a grid, which is isomorphic to RN , as we do when using GAP to
generate usable isotropy and bifurcation information. In any case, for our snowflake region and
odd nonlinearity f the largest known symmetry group is Γ0 = D6 × Z2.

We define a branch of solutions to be the set {(λ, u) ∈ R×L2(Ω) | g(λ, u) = 0} where the functions
u are solutions with a fixed isotropy subgroup. A branch of solutions B1 has a symmetry-breaking
bifurcation at the bifurcation point (λ∗, u∗) ∈ B1 if a branch of solutions, B2, with a different
isotropy subgroup, has (λ∗, u∗) as a limit point but (λ∗, u∗) /∈ B2. We say that branch B2 is created
at this bifurcation, and often refer to B1 as the mother branch and B2 as the daughter branch. The
isotropy subgroup of the daughter branch is always a subgroup of the isotropy subgroup of the
mother branch. That is, the daughter has less symmetry than the mother. Our goal in this section
is to deduce what we can, from symmetry considerations alone, about the branches created at the
bifurcation.

The main tool for finding bifurcation points is the Hessian of the energy functional, the linear map
h(λ, u) : V → V defined by h(λ, u) = D2J(λ, u) = Dug(λ, u). The Hessian represents J ′′(u) (for λ
fixed) in that J ′′(u)(v, w) = 〈h(u)v, w〉 for all v, w ∈ V . The Hessian is a symmetric linear map,
i.e., 〈h(u)v, w〉 = 〈v, h(u)w〉. In Section 2, the vector g and the matrix h represent these objects
in the coefficient space BM . If (λ∗, u∗) is a bifurcation point, then h(λ∗, u∗) is not invertible, since
otherwise the implicit function theorem would guarantee the existence of a unique local solution
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branch. The solutions to g(λ, u) = 0 are critical points of J , so we use the terms solution and
critical point interchangeably.

Example 4.11. The trivial solution to (1, 2) is u = 0, and the trivial branch is {(λ, 0) | λ ∈ R}. Since
h(λ, 0)(v) = ∆v +λv, the bifurcation points of the trivial branch are (λi, 0), where λi, i ∈ N are the
eigenvalues of the Laplacian on Ω with 0 Dirichlet boundary condition. The i-th primary branch
is created at the bifurcation point (λi, 0) on the trivial branch. In cases with double eigenvalues,
for example λ2 = λ3, there are two branches created at the same point. Near (λi, 0), the solutions
on the i-th primary branch are approximately some constant times the i-th eigenfunctions of the
Laplacian, ψi.

We define a degenerate critical point, or a degenerate solution, to be a point (λ∗, u∗) which
satisfies g(λ∗, u∗) = 0 and deth(λ∗, u∗) = 0. Thus, every bifurcation point is a degenerate critical
point. Some degenerate critical points are not bifurcation points. For example, when a branch
folds over and is not monotonic in λ, the fold point is degenerate, but is not a bifurcation point as
we have defined it. (Note that we avoid the term “saddle-node bifurcation” since there is really no
bifurcation.)

The Morse index (MI) of a critical point (λ∗, u∗) is defined to be the number of negative eigen-
values of h(λ∗, u∗) = D2J(λ∗, u∗), provided no eigenvalue is 0. The Hessian is symmetric, so all of
its eigenvalues are real. The Morse index is undefined at a degenerate critical point, and the MI on
a branch of solutions typically changes at a bifurcation point. We will ignore the rare cases where
the Morse index is the same on both sides of a degenerate critical point, and we will assume that
the degenerate critical points are isolated. In particular, we assume that the group Γ0 is finite,
e.g., D6 × Z2. If Γ0 is infinite, then some critical points lie on manifolds with the same dimension
as Γ0. These critical points are always degenerate since infinitesimal motions in Γ0 correspond to
eigenvectors of D2J(λ∗, u∗) with zero eigenvalue. The GNGA can handle such cases (see the works
in progress [21, 27]).

Let us develop some notation to talk about bifurcations. Suppose that (λ∗, u∗) is an isolated
degenerate critical point of a Γ0-equivariant system g(λ, u) = 0, where Γ0 is the largest known
symmetry group of the system. Let Γ = Stab(u∗,Γ0), and define L := h(λ∗, u∗). If we translate u∗
to the origin the system becomes g(λ, u − u∗) = 0 which is Γ-equivariant but not Γ0-equivariant.
Thus Γ, not Γ0, is important as far as the bifurcation of (λ∗, u∗) is concerned. Let E be the
null space of the Γ-equivariant operator L. We call E the center eigenspace. Let Γ′ be the point
stabilizer of E. The definitions are repeated here for reference:

(19) Γ := Stab(u∗,Γ0), L := h(λ∗, u∗), E := N(L), Γ′ := pStab(E,Γ),

where it is understood that (λ∗, u∗) is an isolated degenerate critical point: Γ0 · u∗ is a finite set,
g(λ∗, u∗) = 0 and L is singular.

If e ∈ E, then L(e) = 0 by definition. For any γ ∈ Γ, γ · e ∈ E since the Γ-equivariance of L
implies that L(γ · e) = γ · L(e) = 0. Hence,

Stab(E,Γ) = Γ.

Note that Stab(E,Γ)/pStab(E, Γ) = Γ/Γ′ acts faithfully on E. In the usual case where (λ∗, u∗) is
a bifurcation point, not just a degenerate critical point, we say that Γ/Γ′ is the symmetry group of
the bifurcation, or that (λ∗, u∗) undergoes a bifurcation with Γ/Γ′ symmetry.

Example 4.12. Consider a degenerate critical point (λ∗, u∗) of the PDE (1, 2) with isotropy subgroup
Γ = D6 = 〈ρ, σ〉. Only Γ, and not Γ0 = D6 × Z2, is important as far as bifurcations of (λ∗, u∗)
are concerned. Let E be the null space of L = h(λ∗, u∗). As we will explain later, there are six
generic possibilities for Γ′ = pStab(E,Γ) when Γ = D6. One possibility is that Γ′ = 〈ρ〉, which
gives Γ/Γ′ ∼= Z2. Thus, (λ∗, u∗) can undergo a bifurcation with Z2 symmetry. We emphasize
that pStab(E,Γ), not pStab(E,D6×Z2), is important since the bifurcation of (λ∗, u∗) involves the
affine subspace u∗ + E ⊆ L2(Ω), and pStab(u∗ + E,D6 × Z2) = pStab(E,Γ) = 〈ρ〉. In this case
pStab(E,D6 × Z2) = 〈ρ,−σ,−τ〉 is not relevant.
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In the notation of (19), L sends each of the isotypic components V
(j)
Γ to itself [20, 25, 28].

Barring “accidental degeneracy,” the center eigenspace E is a Γ-irreducible subspace. Thus, E is
typically a subspace of exactly one isotypic component V

(j)
Γ , and dim(E) is the dimension dj of

the corresponding corresponding irreducible representation, α(j). Furthermore, the point stabilizer
of E is the kernel of α(j) and can be computed without knowing E. In summary, the following
typically holds for the center eigenspace at a degenerate critical point with isotropy subgroup Γ:

E ⊆ V
(j)
Γ for some j, dim(E) = ∆MI = dj , and Γ′ = {γ ∈ Γ | α(j)(γ) = I}.

Accidental degeneracy is discussed in [20, 25, 28]. We did not encounter any accidental degeneracy
in our numerical investigation of (1, 2), so we will not discuss it further here.

We finally have the background to describe the bifurcations which occur in equivariant systems.
The goal is to predict what solutions will be created at each of the symmetry breaking bifurcations,
and know what vectors in E to use to start these branches using the pmGNGA. While such a
prediction is impossible in general, we can determine how to follow all of the bifurcating branches
in the system (1, 2). We follow the treatment and notation of [6, 7]. At a symmetry-breaking
bifurcation we can translate (λ∗, u∗) to the origin, and we could, in principle, do an equivariant
Liapunov-Schmidt reduction or center manifold reduction to obtain reduced bifurcation equations
g̃ : R×E → E where g̃(0, 0) = 0, Dg̃(0, 0) = 0, and g̃ is Γ := Stab(u∗)-equivariant. It is important
to realize that we do not actually need to perform the Liapunov-Schmidt reduction.

The most powerful tool for understanding symmetry breaking bifurcations is the Equivariant
Branching Lemma. Recall that absolutely irreducible representations were defined in Example
4.10. See [6, 7] for a thorough discussion of the Equivariant Branching Lemma, including further
references.

Theorem 4.13. Equivariant Branching Lemma (EBL) Suppose Γ acts absolutely irreducibly
on the space E, and let g̃ : R × E → E be Γ-equivariant. Assume that Γ acts nontrivially, so
g̃(λ, 0) = 0. Since Γ acts absolutely irreducibly, Dg̃(λ, 0) = c(λ)Id for some function c : R → R,
where Id is the identity matrix of size d = dim(E). Assume that c(0) = 0 and c′(0) 6= 0. Let Σ
be an isotropy subgroup of the Γ action on E with dimFix(Σ, E) = 1. Then there are at least two
solutions branches of g̃(λ, u) = 0 with isotropy subgroup Σ created at (0, 0).

The EBL, combined with Liapunov-Schmidt theory, implies that there are at least two solutions
branches of the full problem g(λ, u) = 0 with isotropy subgroup Σ created at the bifurcation point
(λ∗, u∗). We call these newly created branches EBL branches since their existence can be predicted
by the EBL. Other branches created at a bifurcation are called non-EBL branches.

Following [6, 7], we define a maximal isotropy subgroup of a Γ action on V to be an isotropy
subgroup Σ 6= Γ with the property that if Θ is an isotropy subgroup such that Σ ≤ Θ, then Θ = Σ
or Θ = Γ. In other words, a maximal isotropy subgroup is a maximal proper isotropy subgroup.
In the context of the EBL, if dim(Fix(Σ, E)) = 1, then Σ is a maximal isotropy subgroup of the Γ
action on E. The converse, however, is not true.

In gradient systems, for example the PDE (1, 2), more can be said. If Σ is any maximal isotropy
subgroup of the Γ action on E, then there is typically a solution branch created at the bifurcation
with isotropy subgroup Σ. If dim Fix(Σ, E) ≥ 2, the branch created is an example of a non-EBL
branch. See [6, 7, 24] for a discussion of bifurcations in gradient systems.

As discussed in Proposition 4.5, if Σ is any isotropy subgroup of the Γ action on E, then the
stabilizer of Fix(Σ, E) is NΓ(Σ). Equation (12) reminds us that the point stabilizer of Fix(Σ, E) is
Σ. Therefore, the effective symmetry group of g̃, restricted to Fix(Σ, E), is NΓ(Σ)/Σ.

Example 4.14. Consider a degenerate critical point with isotropy subgroup Γ1 = D6 = 〈ρ, σ, τ〉.
Barring accidental degeneracy, the center eigenspace E is a subspace of one of the 6 isotypic
components of the D6 action on L2(Ω) described in Example 4.8. Figure 3 shows the lattice of
isotropy subgroups for D6 acting on each of these 6 isotypic components V (j). These 6 cases can be
distinguished by determining which isotypic component any eigenfunction in E belongs to. We shall



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 15
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Figure 3. Diagrams of the six isotropy lattices for the actions of D6 = 〈ρ, σ, τ〉 on
each of the six isotypic components V (j) of the D6 action on L2(Ω). This describes
the six possibilities (barring accidental degeneracy) for the D6 action on the center
eigenspace E at a degenerate critical point.

go through each of these six cases, and describe the resulting bifurcation. Recall that Γ = Γ1 = D6

for each of these cases. The minimal isotropy subgroup in each case is Γ′ = pStab(E, Γ). The cases
are

E ⊆ V (1) ⇒ Γ′ = Γ1 = 〈ρ, σ, τ〉, dimE = 1, Γ/Γ′ ∼= {1}
E ⊆ V (2) ⇒ Γ′ = Γ13 = 〈ρ〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V (3) ⇒ Γ′ = Γ9 = 〈ρ2, σ〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V (4) ⇒ Γ′ = Γ10 = 〈ρ2, τ〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V (5) ⇒ Γ′ = Γ19 = 〈ρ3〉, dimE = 2, Γ/Γ′ ∼= D3

E ⊆ V (6) ⇒ Γ′ = Γ22 = {1}, dimE = 2, Γ/Γ′ ∼= D6.

The first case, E ⊆ V (1) = Fix(Γ1, L
2(Ω)), does not lead to a symmetry-breaking bifurcation. The

D6 action on E is trivial, so the EBL does not apply. The degenerate critical point (u∗, λ∗) is
typically a fold point (or saddle-node), not a bifurcation point. In the neighborhood of the fold
point there is only one solution branch, with isotropy subgroup Γ1, and the branch lies to one side
of λ = λ∗ or the other.

The next three cases, with Γ/Γ′ ∼= Z2 symmetry, are called pitchfork bifurcations. Clearly, the
only maximal isotropy subgroup is Γ′ in each case, and the EBL applies. The effective symmetry
group acting on E is Z2, so there are two conjugate solution branches created at the bifurcation.
In the branch following code we follow one of these branches using the pmGNGA starting with any
eigenvector e ∈ E.

The next case, with E ⊆ V (5), is a bifurcation with D3 symmetry. There is a maximal isotropy
subgroup Γ5 which is different from Γ′ = Γ19 in this case. It satisfies

dimFix(Γ5, E) = 1, and NΓ1(Γ5)/Γ5 = {1}.
Using a projection operator, we can find an eigenvector e ∈ E with Stab(e, Γ1) = Γ5. The pmGNGA
using this eigenvector e will follow one of the solution branches created at the bifurcation, and the
pmGNGA using the negative eigenvector −e will find a branch that is not conjugate to the first.
From our knowledge of bifurcations with D3 symmetry (see [6, 7]) we know that typically only these
two branches (and their Γ1 group orbits) are created at the bifurcation. (There are six branches
created in all.) We also know that the branches are transcritical, meaning that one branch exists
for λ < λ∗ and the other exists for λ > λ∗.

The last case, with E ⊆ V (6), is a bifurcation with D6 symmetry. There are two maximal
symmetry types, the conjugacy classes of Γ15 and Γ16. A calculation shows that

dim Fix(Γ15, E) = dim Fix(Γ16, E) = 1, and NΓ1(Γ15)/Γ15 = NΓ1(Γ16)/Γ16 = {1}.
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Figure 4. The diagrams of the four isotropy lattices for the actions of Γ13 = 〈ρ〉
on each of the four isotypic components V

(j)
〈ρ〉 of the Γ13 action on L2(Ω). This

describes the four possibilities (barring accidental degeneracy) for the Γ13 action on
the center eigenspace E at a degenerate critical point.

To follow one branch from each of the group orbits of solution branches created at this bifurcation,
it suffices to use the pmGNGA twice, with the eigenvectors e1, e2 ∈ E, where Stab(e1, Γ1) = Γ15

and Stab(e2,Γ1) = Γ16. It is well-known that these EBL-branches are typically the only branches
created at a bifurcation with D6 symmetry [6, 7].

Example 4.15. Consider a degenerate critical point with isotropy subgroup Γ13 = 〈ρ〉 ∼= Z6. Barring
accidental degeneracy, the center eigenspace E is a subspace of one of the 4 isotypic components
V

(j)
〈ρ〉 defined in Example 4.10. Figure 4 shows the lattice of isotropy subgroups for Γ13 acting on

each of these 4 isotypic components. Recall that Γ = Γ13 = 〈ρ〉 for each of these cases, and the
minimal isotropy subgroup is Γ′ = pStab(E,Γ). We shall go through each of the four cases, and
describe the resulting bifurcation:

E ⊆ V
(1)
〈ρ〉 = V (1) ⊕ V (2) ⇒ Γ′ = Γ13 = 〈ρ〉, dimE = 1, Γ/Γ′ ∼= {1}

E ⊆ V
(2)
〈ρ〉 = V (3) ⊕ V (4) ⇒ Γ′ = Γ21 = 〈ρ2〉, dimE = 1, Γ/Γ′ ∼= Z2

E ⊆ V
(3)
〈ρ〉 = V (5) ⇒ Γ′ = Γ19 = 〈ρ3〉, dimE = 2, Γ/Γ′ ∼= Z3

E ⊆ V
(4)
〈ρ〉 = V (6) ⇒ Γ′ = Γ22 = {1}, dimE = 2, Γ/Γ′ ∼= Z6.

The first two cases are analogous to the first two cases in example 4.14. When Γ/Γ′ ∼= {1} there is a
fold point, but no symmetry breaking bifurcation. There is pitchfork bifurcation when Γ/Γ′ ∼= Z2.
The next two cases are interesting because Γ13 does not act absolutely irreducibly on E, and the
EBL does not apply. In both cases Γ′ is a maximal isotropy subgroup.

In the third case, where E ⊆ V
(3)
〈ρ〉 = V (5), every eigenfunction in the 2-dimensional E has isotropy

subgroup Γ19. Since we have a gradient system, we know that solution branches with isotropy
subgroup Γ19 are created at this bifurcation with Z3 symmetry. The bifurcation is well-understood,
and it looks like a bifurcation with D3 symmetry, except that the “angle” of the bifurcating solutions
in the E plane is arbitrary. This means that trial and error is needed. Eigenfunctions with several
angles are used to start the pmGNGA. If the angle is wrong, Newton’s method will not converge to
find the first solution on the branch. When a branch is found for a starting eigenfunction e, then
its negative −e is used to find the other solution branch.

In the fourth case, where E ⊆ V
(4)
〈ρ〉 = V (6), every eigenfunction in E has the same isotropy

subgroup: Γ22 = {1}. Gradient bifurcations with Z6 symmetry look like bifurcations with D6

symmetry, except that the angle in the E plane is arbitrary. Again, trial and error is needed to
find starting eigenfunctions for which the pmGNGA converges.

The Bifurcation Digraph. There are 23 different isotropy subgroups for the D6 × Z2 action on
L2(Ω). Thus, a calculation similar to Examples 4.14 and 4.15 needs to be done for each isotropy
subgroup except Γ22 = {1}. These were done by hand, and verified with GAP. There are 59 generic
symmetry-breaking bifurcations, since there are 59 different isotypic components V

(j)
Γi

on which Γi



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 17

acts nontrivially. The amount of information is overwhelming, so we display the essential results
in what we call a bifurcation digraph.

Definition 4.16. The bifurcation digraph of the Γ0 action on a real vector space V is a directed
graph with labelled arrows. The vertices are the symmetry types (equivalence classes of isotropy
subgroups). Given Σ and Γ, two isotropy subgroups of the Γ0 action on V , we draw an arrow from
[Γ] to [Σ] iff Σ is a maximal isotropy subgroup of the Γ action on some isotypic component V

(j)
Γ

of V . Each arrow has the label Γ/Γ′, where Γ′ is the kernel of the Γ action on V
(j)
Γ . Furthermore,

each arrow is either solid, dashed or dotted. The arrow is

solid if dim Fix(Σ, E) = 1 and NΓ(Σ)/Σ = Z2,

dashed if dim Fix(Σ, E) = 1 and NΓ(Σ)/Σ = {1}, and

dotted if dim Fix(Σ, E) ≥ 2,

where E is any irreducible subspace contained in V
(j)
Γ .

Note that if dim Fix(Σ, E) = 1, then NΓ(Σ)/Σ is either Z2 or {1}, since these are the only linear
group actions on E ∼= R1. Thus, the three arrow types (solid, dashed, and dotted) exhaust all
possibilities.

Theorem 4.17. For a given Γ0 action on V , every arrow in the diagram of the isotropy lattice is
an arrow in the bifurcation digraph.

Proof. Suppose [Γ] → [Σ] is an arrow in the diagram of the isotropy lattice. Then some Σ∗ ∈ [Σ] is a
maximal isotropy subgroup of the Γ action on V . Choose u∗ ∈ V such that Stab(u∗, Γ) = Σ∗. Such
a u∗ exists since Σ∗ is an isotropy subgroup. Now consider the isotypic decomposition {V (j)

Γ }j∈J

of V . We can write u∗ =
∑

j∈J u(j), where u(j) ∈ V
(j)
Γ are uniquely determined. Let γ be any

element of Σ∗. Then γ · u∗ =
∑

j∈J γ · u(j) = u∗. Since each of the components V
(j)
Γ is Γ-invariant,

γ · u(j) = u(j) for each j ∈ J . Thus Σ∗ ≤ Stab(u(j), Γ) for each j ∈ J . Either Stab(u(j),Γ) = Γ or
Stab(u(j), Γ) = Σ∗, since Σ∗ is a maximal isotropy subgroup of the Γ action on V . If Stab(u(j), Γ) =
Γ for all j ∈ J , then Stab(u∗, Γ) = Γ. But Stab(u∗,Γ) 6= Γ, so Stab(u(j),Γ) = Σ∗ for some j ∈ J ,
and Σ∗ is a maximal isotropy subgroup of the Γ action on this component V

(j)
Γ of V . Therefore the

bifurcation digraph has an arrow from [Γ] to [Σ∗] = [Σ]. ¤
Theorem 4.17 says that the bifurcation digraph is an extension of the diagram of the isotropy

lattice. The bifurcation digraph has more arrows, in general. As with the lattice of isotropy
subgroups [6, 7], we usually draw a single element Γ of the equivalence class, [Γ] as the vertices of
the bifurcation digraph.

An arrow from Γ to Σ in the bifurcation digraph indicates that a Γ0-equivariant gradient system
g(λ, u) = 0 can have a generic symmetry-breaking bifurcation where a mother branch with isotropy
subgroup Γ creates a daughter branch with isotropy subgroup Σ. The symmetry group of the
bifurcation is Γ/Γ′, and the center eigenspace at the bifurcation point is the Γ-irreducible space
E. The information encoded in the label and arrow type is used by the heuristics of our branch-
following algorithm. A solid arrow indicates that every e in the one-dimensional space Fix(Σ, E)
satisfies γ · e = −e for some γ ∈ Σ. Thus, there is typically a pitchfork bifurcation in the space
Fix(Σ, E). A dashed arrow indicates that γ · e = e for all e ∈ Fix(Σ, E) and γ ∈ Σ. A dashed
arrow often indicates a transcritical bifurcation in the space Fix(Σ, E), meaning that one branch
bifurcates to the left (λ < λ∗) and a non-conjugate branch bifurcates to the right (λ > λ∗). A dotted
arrow indicates that the EBL does not apply to this bifurcation. As mentioned above, branching
of solutions corresponding to a dotted arrow is generic in gradient systems [24, 6]. In bifurcations
of non-gradient ODEs, a dotted arrow would indicate that a Hopf bifurcation is to be expected,
whereas the solid or dashed lines correspond to the possibility of both stationary bifurcations and
Hopf bifurcations. Thus, the bifurcation digraph would be useful for non-gradient systems as well.
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In our problem, where Γ0 = D6 × Z2 acts on L2(Ω), the label Γ/Γ′ and arrow type are sufficient
to characterize the bifurcation completely. For more complicated groups, the label may need to
contain more information about the action of Γ on E. For example the label Γ/Γ′ = S4 would be
ambiguous, since S4 has two faithful irreducible representations with different lattices of isotropy
subgroups.

Example 4.18. The bifurcations described in Examples 4.14 and 4.15 lead to several edges in the
bifurcation digraph for the D6×Z2 action on L2(Ω). From Example 4.14, we see that there are six
arrows in the bifurcation digraph coming from [Γ1]. They are

[Γ1]

Z2

²²

[Γ1]

Z2

²²

[Γ1]

Z2

²²

[Γ1]

D3

²²
Â
Â
Â

[Γ1]

D6

²²

[Γ1]

D6

²²

[Γ9] [Γ10] [Γ13] [Γ5] [Γ15] [Γ16] .

From Example 4.15, we see that there are three edges coming from [Γ13]. Here we list these vertices
with the convention [6, 7] used in the lattice of isotropy subgroups that the vertices are Γi rather
than [Γi]:

Γ13

Z2

²²

Γ13

Z3

²²

Γ13

Z6

²²

Γ21 Γ19 Γ22 .

There are 65 directed edges in the bifurcation digraph for the D6×Z2 action on L2(Ω). A condensed
bifurcation digraph is shown in Figure 5. This digraph is of great help in writing an automated
code for branch following. There are only 5 possibilities for the symmetry group of the bifurcation:
Γ/Γ′ = Z2, Z3, Z6, D3, or D6. The symmetry-breaking bifurcation with each of these symmetries
is well understood [6, 7], and each is described briefly in example 4.14 or 4.15

5. Symmetry and Computational Efficiency.

Several modifications of the GNGA (2.1) take advantage of symmetry to speed up the calcula-
tions. The symmetry forces many of the components of the gradient and Hessian to be zero. We
identified these zero components and avoided doing the time-consuming numerical integrations to
compute them. At the start of the C++ program, the isotropy subgroup, Γi, of the initial guess is
computed. Recall that there are M modes in the Galerkin space BM , so dim(BM ) = M . Define
Mi := dim(Fix(Γi, BM )). In our PDE with D6 × Z2 symmetry, Fix(Γi, BM ) is a coordinate sub-
space of BM , so at most Mi of the M components of the gradient (6) are nonzero. The numerical
integrations are not done for the components of g which must be zero. Furthermore, Mi(Mi +1)/2
rather than M(M + 1)/2 numerical integrations are needed to compute the part of the Hessian
matrix h needed by the GNGA algorithm. Equation (7) says that hj k = λj δj k −

∫
Ω f ′(u)ψjψk.

The numerical integration is done only if ψj and ψk are both in Fix(Γi), but the λj δjk term is
included for all j ∈ {1, . . . , M} so that the Hessian is nonsingular. We then solve the linear system
hχ = g with M equations and M unknowns. We could solve a reduced system with Mi equations
and Mi unknowns, but this would not speed up the algorithm very much since the majority of the
execution time is spent doing the numerical integrations. After Newton’s method converges to a
solution, the full Hessian needs to be calculated in order to compute the MI. Here, too, we can take
advantage of the symmetry. Since h is a Γi -equivariant operator, the Hessian is block diagonal in
the isotypic decomposition of BM for the Γi action. In other words, hj k = 0 if ψj and ψk are in
different isotypic components V

(j)
Γi

of BM .
For example, the isotropy subgroup Γ1 = D6 has M1 = 30 when M = 300. When all of the

M + (M + 1)/2 = 45450 numerical integrations were done it took about 44 seconds on a 1GHz
PC to do one iteration of Newton’s method at level 5. With the symmetry improvements it takes
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Figure 5. The bifurcation digraph for the D6 × Z2 action on L2(Ω) extends the
diagram of the isotropy lattice. The digraph shown is condensed as in Figure 2.
The arrows indicate generic symmetry breaking bifurcations. The Morse index of
the mother branch changes by 1 at bifurcations with Z2 symmetry, and it changes
by 2 at all other bifurcations shown here.

about 1.5 seconds per Newton iteration. The computation of the Hessian restricted to Fix(Γ1)
is about 100 times faster than computing the full Hessian, so we estimate that it took about 43
seconds to compute the 300× 300 Hessian doing all the numerical integrations, about 0.5 seconds
to compute the 30×30 reduced Hessian, and then about 1 second to solve the linear system hχ = g
for the Newton step χ. After the solution was found, it took about 11 seconds to compute the
non-zero elements of the full Hessian and the MI, using the symmetry restrictions to avoid most
of the numerical integration. Since Newton’s method usually converged in 4 or 5 steps, the C++
program spent more execution time computing the MI than it spent to find the solution, at least
for solutions with symmetry type S1. As the symmetry gets lower on the bifurcation digraph, the
program takes more execution time.
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Figure 6. Bifurcation diagrams of the sixth primary branch, showing ||u||22 and
u(2/27, 4

√
3/27) as a function of λ. Since ||u||22 is a D6 × Z2-invariant function of

u, each group orbit of solution branches is shown as one curve on the left. The
disadvantage of plotting ||u||22 is that the curves in many bifurcation diagrams are
not well separated. The point (2/27, 4

√
3/27) is not on any of the reflection axes

of the snowflake region. There are 2 primary branches with symmetry S1, four
secondary branches with symmetry S9, and four secondary branches with symmetry
S10. Our choice for the bifurcation diagrams in this paper combines the advantages
of both views: u(2/27, 4

√
3/27) is plotted as a function of λ for exactly one branch

(the solid lines) from each group orbit. Unless indicated otherwise, all figures were
produced with level ` = 5 and M = 300 modes.

6. Automated Branch Following.

The branch following code is a complex collection of about a dozen Perl scripts, Mathematica and
Gnuplot scripts, and a C++ program. These programs write and call each other fully automatically
and communicate through output files, pipes and command line arguments. A complete bifurcation
diagram can be produced by a single call to the main Perl script.

Various choices for the function of u plotted vs. λ are shown in Figure 6. In most bifurcation
diagrams we plot approximate solutions u evaluated at a generic point (2/27, 4

√
3/27) versus the

parameter λ; other choices for the vertical axis such as J(u) or ‖u‖∞ lead to less visible separation
of branches. Two conjugate solutions can have different values at the generic point, but since our
program follows only one branch in each group orbit this does not cause a problem.

The C++ program implements the GNGA algorithm. Its input is a vector of coefficients a ∈ RM

for an initial guess in Newton’s method, an interval for λ, a stepsize for λ and several other
parameters such as the level and the number of modes used in the expansion of solutions. It finds
solutions on a single branch of the bifurcation diagram. Every solution is written as a single line
in an output file. This line contains all the information about the solution such as the level, the
number of modes, the symmetry of the solution, the stepsize, etc. Each line in the output file can
be used to write an input file for a subsequent call to the same C++ program.

The C++ program finds one branch (referred to as the main branch) and a short segment of each
of the daughter branches created at bifurcations of the main branch. The coefficients approximating
the first solution on the branch are supplied to the C++ program. Newton’s method is used to find
this first solution, then λ is incremented and the next solution is found. The program attempts to
follow the main branch all the way to the final λ, usually 0. Heuristics are used to double or halve
the λ stepsize when needed, keeping the stepsize in the interval from the initial stepsize (input to
the C++ program) to 1/32 of the initial stepsize. For example, the stepsize is halved if Newton’s
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method does not converge, if it converges to a solution with the wrong symmetry, or if more than
one bifurcation is detected in one λ step.

The Morse index is computed at each λ value on the main branch. When the MI changes a
subroutine is called to handle the bifurcation before the main branch is continued. If the MI
changes from m1 to m2, we define m = max{m1,m2}. Then the bifurcation point is approximated
by using the secant method to set the m-th eigenvalue of the Hessian h(u) to zero as a function of
λ. The GNGA is needed at each step of the secant method to compute u = u(λ). We find that the
GNGA works well even though we are approximating a solution for which the Hessian is singular.

After the bifurcation point is approximated, a short segment of each bifurcating branch is com-
puted and one output file is written for each branch. If the Equivariant Branching Lemma (EBL)
holds, then we know exactly which critical eigenvector to use for each branch. Let the Fourier
coefficients of the solution at the bifurcation point be a∗, let the normalized critical eigenvector be
e ∈ RM , and let k be defined by |ek| ≥ |ei| for all i. We then use the pmGNGA with the initial guess
a = a∗+ t e, keeping the k-th component fixed and solving for λ and the other M−1 components of
a. We start with t = 0.1, but this is decreased if Newton’s method does not converge. More points
on the bifurcating branch are computed in the same way, except that a∗ is the last solution found
on the branch. This short segment of the bifurcating branch ends when λ reaches the bifurcation
value λ∗ minus the stepsize, or when the pmGNGA does not converge even when t is extremely
small, or when a maximum number of points on the branch is computed.

Algorithm 6.1. (follow_branch)

(1) Input: bifurcation point (λ, a), one
critical eigenvector e ∈ RM and a stepsize ∆λ < 0. The subroutine writes
a file with the first part of a bifurcating branch.

(2) Write (λ, a) to output file. Set t = 0.1. Set λb = λ.
(3) Compute index k so that |ek| ≥ |ei| for all i ∈ {1, . . . , M}.
(4) Repeat until λb − λ < ∆λ, or t < 0.1/32 or some maximum number of points have

been written to the file.
(a) Do the pmGNGA with initial guess (λ, a + t e), fixing coefficient k.
(b) If Newton’s method converges replace (λ, a) by the solution found and

write this point to the file, else t ← t/2.

Note that the pmGNGA can follow a branch that bifurcates to the right or the left. Those
that bifurcate to the right usually turn over in a saddle-node “bifurcation” that does not offer any
difficulty for the pmGNGA. Figures 7 and 8 show several examples of bifurcations.

In the bifurcations with Z3 and Z6 symmetry in our problem, the EBL does not hold: The
2-dimensional center eigenspace does not have a one-dimensional subspace with more symmetry.
Figure 8 shows one of the few examples bifurcations with Z3 symmetry that we observed. By
good fortune, the branches with symmetry type S19 were successfully followed using the same
eigenvectors one would choose for a bifurcation with D3 symmetry. A better method for following
bifurcating solutions that are not predicted by the EBL would be to use the pmGNGA with random
(normalized) eigenvectors in E repeatedly until it appears that all equivalence classes of solutions
have been found.

The branch following code is called recursively by a main Perl script. Initially, the C++ program
follows the trivial branch on a given λ range. This results in an output file for the trivial branch
and another output file for each bifurcating primary branch. Then the short parts of the primary
branches are followed with more calls to the C++ program. Any bifurcating branch results in
a new output file, and the Perl script makes another call to the C++ program to continue that
branch. The main Perl script’s most important job is book keeping. It saves the output files with
distinct names, and calls the branch following code to continue each of the new branches. The
process stops when all the branches are fully followed within the given λ range.
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Figure 7. A partial bifurcation diagram of the 14-th primary branch showing a D6,
a D3 and several Z2 bifurcations. At the D6 bifurcation, 12 branches in two different
group orbits are born. In accordance with Figure 6, only two branches are followed
and shown on this bifurcation diagram. An animation showing the followed branch
with symmetry type S15 is shown in s3s15.gif, and an animation of the followed
branch with symmetry type S17 is in s3s17s7.gif. Note that this branch with S17

symmetry “dies” at a bifurcation with Z2 symmetry, showing that we cannot always
make a consistent distinction between secondary and tertiary branches. At the D3

bifurcation, 6 branches in two different group orbits are born. As before, only two
branches are followed. An animation showing the “upper” branch with symmetry
type S7, through the bifurcation point and continuing to the “lower” branch with
symmetry type S7 is shown in s7s3s7.gif. For clarity, the branches bifurcating
from 3 of the Z2 bifurcations are not shown. The numbers next to a branch indicate
the MI of the solution. The MI changes by 2 at a square, and by 1 at a circle.

In this way, a complete bifurcation diagram is produced by a single invocation of the main Perl
script. There is no need to guess initial conditions for input to Newton’s method, since the trivial
solution is known exactly (a = 0) and all the other solutions are followed automatically.

The main Perl script calls several other smaller scripts. For example, there is a script which
extracts solutions from output files and feeds them to the branch following code as input. Another
script creates Gnuplot scripts on the fly to generate bifurcation diagrams. Branch following results
in a great number of output files. The organization is an important task. Perl scripts are used to
automatically number and store the output files and create human readable reports about them.

7. Numerical Results.

Our goal was to find solutions to (1, 2) at λ = 0 with all 23 symmetry types. The 24-th primary
branch is the first one with symmetry type S2, so we followed the first 24 primary branches. With
level ` = 5 and M = 300 modes, which gave our most accurate results, this found solutions with
all symmetry types except S11 and S14. We then searched the first 100 primary branches, only
following solutions with symmetry above S11 and S14 on the bifurcation digraph (Figure 5.) In this
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Figure 8. The D3 bifurcation of the 13-th primary branch is on the left. This is the
only observed D3 bifurcation that is not transcritical. An animation of the upper
branch with symmetry type S5, through the bifurcation point and continuing with
the lower branch is shown in s5s1s5.gif. A Z3 bifurcation of a daughter of the 24-th
primary branch is shown on the right. The branches created at this bifurcation are
not described by the EBL. An animation of the branches with symmetry type S19 is
shown in s19s13s19.gif. The bifurcation digraph in Figure 5 indicates that there
are possible bifurcations with Z6 symmetry. We did not observed such a bifurcation
with level ` = 5 and M = 300 modes.

way we found solutions with all 23 symmetry types. The bifurcation diagrams which lead to these
solutions are shown in Figures 9–12. We chose one solution at λ = 0 with each symmetry type
by taking the one descended from the lowest primary branch. These choices are indicated by dots
in Figures 9–12, and the corresponding contour diagrams of the solutions are shown in Figures 13
and 14. The contour diagrams use white for u > 0 and black for u < 0, and gray indicates u = 0.
Equally spaced contours are drawn along with dots for local extrema. Details about the technique
for generating these contour diagrams are found in [20].

At level ` = 5 we have computed 300 eigenfunctions so M ≤ 300 is possible. At level ` = 6 we
computed only 100 eigenfunctions. Due to our limited computational resources, using more than
100 modes on level 6 was not practical. We ran our experiments using a range of modes and levels
in order to observe convergence and qualitative stability of the implementation of our algorithm.

As an indication of the convergence, consider the bifurcation diagram in Figure 9. The diagram
looks qualitatively the same for any choice of ` and M that we used. The position of the bifurcation
point creating the S10 solution (near λ = 30) changes slightly, according to this table:

` = 4 ` = 5 ` = 6
M = 100 35.3931 34.9814 34.9252
M = 200 32.1131 32.2964
M = 300 32.0518

.

The level 5 and 6 approximations with M = 100 modes are very close, but increasing the mode
number has more of an effect. This indicates that the results with (`,M) = (5, 300) are more
accurate than those with (6, 100). Figure 15 shows how u(2/27, 4

√
3/27) varies with mode number

and ` for the solution with S10 symmetry at λ = 0 shown in Figures 9 and 13. The horizontal
segments of the graphs correspond to the addition of modes with zero coefficients for this solution.
Based on this and other similar convergence results, we chose to use level 5 with 300 modes in most
of our numerical experiments.
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Figure 9. The complete bifurcation diagram for the first six primary branches
bifurcating from the trivial branch. Primary branch j is labelled by the eigenvalue
λj at which it bifurcates. The branches born at multiple eigenvalues are labelled so
that the j-th primary branch has MI j near the bifurcation. The second branch,
with symmetry S7, contains the CCN solution. The dots at λ = 0 in Figures 9–12
correspond to solutions depicted in Figures 13 and 14. We used the level 5 grid with
300 modes in creating all bifurcation diagrams. In Figure 15 convergence data for
the solution of symmetry type S10 at λ = 0 is provided.

8. Conclusions.

We are currently working on a more general program for recursive branch following in symmetric
systems. Our goal is to write a suite of programs that will create the full bifurcation diagram with
a single command for any one-parameter gradient system ∇J(λ, u) = 0, where J : R× Rn → R is
(Γ × Z2)-invariant, Γ is a permutation group acting on Rn, and the nontrivial element of Z2 acts
on Rn as −I. In the current paper, the group D6 acts as permutations on GN

∼= RN , the space of
functions on a grid.

Starting with any graph, the analog to Equation 1 is the Partial difference Equation (PdE)
Lu + f(u) = 0 [18], where L is the well-known discrete Laplacian on that graph and u is a real-
valued function on the vertices. Discretizing a PDE as we have done in this paper leads to a PdE
on a graph with a large number of vertices. (The grid points are the vertices of the graph, and the
edges of the graph connect nearest neighbor grid points.) Our new branch-following program will
be able to compute the bifurcation diagram for the PdE on an arbitrary graph.

The programs we describe in the current paper will work with other superlinear odd f and other
regions with hexagonal symmetry. The nonlinearity f needs to be superlinear since our program
assumes that the branches eventually “go to the left.” Our general program will not have this
restriction; the GNGA and pmGNGA will be replaced by a single method of branch following that
is able to go through fold points, and has no prejudice about the parameter increasing or decreasing.
This new method of branch following has already been successfully implemented in [27]. We hope
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Figure 11. A partial bifurcation diagram providing three additional symmetry
types. For clarity, the trivial branch is not shown in this and the next figure.
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Figure 12. A partial bifurcation diagram containing solutions of the seven remain-
ing symmetry types. Primary branch 24 is the first branch with symmetry type S2.
The symmetry types S14 and S11 were found by searching the first one hundred
primary branches, following only those branches which can lead to solutions with
the desired symmetry. These two solutions are included for completeness, but their
existence for the PDE would have to be confirmed with more modes and a higher
level approximation of the eigenfunctions.

to write the new code so that a cluster of computers can be used in parallel, with each computer
following a single branch at one time, under the control of a central PERL script.

While our program assumes that is f is odd, it could work for non-odd f with minimal modifica-
tion. When f is non-odd, only subgroups of D6 are isotropy subgroups. We would have to check for
false identification of isotropy subgroups, but that would happen rarely. The hardest case would
be if fλ is non-odd and fλ(0) = 0 (for example fλ(u) = λu + u2 if u ≥ 0 and fλ(u) = λu + u3 if
u < 0.) In this case u = 0, would be a solution for all values of the parameter λ, and the program
described in this paper would think that the symmetry of u = 0 is D6 × Z2 when it is actually D6.
At bifurcations of u = 0, the eigenfunctions ψj and −ψj would spawn two non-conjugate branches
whereas the program as it stands would assume that the two branches are conjugate and only follow
one of them.

If we used our program without modification for non-odd fλ that do not satisfy fλ(0) = 0 the
problem would be that u = 0 is not a solution to the PDE. We would have to find at least one
solution by trial and error to start the first branch. The simplest procedure would be to find the
positive and negative solutions using initial guesses of the form u = cψ1. These two solutions could
then be used as the starting points for two separate runs of our recursive branch following program.

It is valid to ask the question “does the GNGA converge” (as implemented in this current re-
search). While we do not have a complete proof affirming the positive of this conjecture, many
references contain relevant theorems. The GNGA is an implementation of Newton’s method, which
indeed converges under standard assumptions. In [10], one finds the classical fixed point itera-
tion proof that Newton’s method in RN converges when the initial guess is sufficiently close to a
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Action of ρ, σ, and τ . Γ0 = 〈ρ, σ, τ,−1〉 Γ1 = 〈ρ, σ, τ〉

Γ2 = 〈ρ,−σ,−τ〉 Γ3 = 〈−ρ, σ − τ〉 Γ4 = 〈−ρ,−σ, τ〉

Γ5 = 〈σ, τ〉 Γ6 = 〈−σ,−τ〉 Γ7 = 〈σ,−τ〉

Γ8 = 〈−σ, τ〉 Γ9 = 〈ρ2, σ〉 Γ10 = 〈ρ2, τ〉

Figure 13. The action of the generators of D6 on the plane, along with contour
plots of solutions with symmetry types S0, . . . , S10 at λ = 0. Recall that Si = [Γi].
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Γ11 = 〈ρ2,−τ〉 Γ12 = 〈ρ2,−σ〉 Γ13 = 〈ρ〉

Γ14 = 〈−ρ〉 Γ15 = 〈σ〉 Γ16 = 〈τ〉

Γ17 = 〈−τ〉 Γ18 = 〈−σ〉 Γ19 = 〈ρ3〉

Γ20 = 〈−ρ3〉 Γ21 = 〈ρ2〉 Γ22 = {1}

Figure 14. Contour plots of solutions with symmetry types S12, . . . , S22 at λ = 0.
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the lowest energy solution at λ = 0 with symmetry type S10. The point at M =
300 matches the point labelled with S10 in Figure 9. The curves cross near M =
50 because ψ51 at level ` = 4, and ψ52 at levels 5 and 6 approximate the same
eigenfunction. Similarly, ψ52 at level ` = 4, and ψ51 at levels 5 and 6 approximate
the same eigenfunction. This unusual labelling happens because the approximate
eigenvalues of the two eigenfunctions in questions are ordered differently at ` = 4
and ` = 5, whereas λ51 < λ52 by definition.

nondegenerate zero of the object function. This proof applies almost without change to the infi-
nite dimensional case. Also addressed in [10] are algorithms where the object function and/or its
derivative are only approximated; this would apply to our implementation due to numerical inte-
gration errors, as well as owing to our imperfect knowledge of the eigenfunctions and corresponding
eigenvalues. While not discussed exactly in the cited literature, elementary fixed point arguments
indicate that the restriction of our object function ∇J to sufficiently large subspaces BM will still
result in convergent iterations. It would be worthwhile to string these type of results together in
order to obtain a “best possible” GNGA convergence theorem. The companion monograph [9] gives
an easy introduction into some of the details of implementing Newton’s method to solve nonlinear
problems. Further, in the spirit of [4] and [29], by the invariance of the Newton map, any conver-
gence result should hold in fixed point subspaces corresponding to a given symmetry type. The
articles [13, 29] and others by those authors discuss the convergence of algorithms similar to the
GNGA, at times also considering symmetry restrictions. Finally, the well known book [1] contains
relevant convergence results for Newton and approximate Newton iterative fixed point algorithms.

In summary, we have written a suite of programs that automatically computes the bifurcation
diagram of the PDE (1, 2). The program follows all of the solution branches which are connected to
the trivial branch by a sequence of symmetry-breaking bifurcations. A thorough understanding of
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the possible symmetry-breaking bifurcations is required for this task. We introduced the bifurcation
digraph, which summarizes the results of the necessary symmetry calculations. For the group
D6 ×Z2, these calculations were done by hand and verified by the GAP computer program [5, 14].
In the future, we plan to implement automated branch following in systems where the symmetry
group is so complicated that GAP is necessary.
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